DOI QR코드

DOI QR Code

Direct Palladium-Catalyzed C-4 Arylation of Tri-substituted Furans with Aryl Chlorides: An Efficient Access to Heteroaromatics

  • Yang, Hai (The Hunan Provincial Education Department Key Laboratory of Ecological Textile Materials & Novel Dying and Finishing Technology, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering) ;
  • Zheng, Zhishuo (Department of Physics, Guangdong University of Education) ;
  • Zeng, Jian (The Hunan Provincial Education Department Key Laboratory of Ecological Textile Materials & Novel Dying and Finishing Technology, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering) ;
  • Liu, Huajie (The Hunan Provincial Education Department Key Laboratory of Ecological Textile Materials & Novel Dying and Finishing Technology, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering) ;
  • Yi, Bing (The Hunan Provincial Education Department Key Laboratory of Ecological Textile Materials & Novel Dying and Finishing Technology, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering)
  • Received : 2012.03.26
  • Accepted : 2012.05.10
  • Published : 2012.08.20

Abstract

A series of functionalized furans were synthesized by way of a palladium-catalyzed coupling reaction of 2,3,5-trisubstituted furans with aryl chlorides through C-H bond cleavages at C-4 position. The feature of the reaction was facilitative preparation of furan derivatives with good functional group tolerance. All reactions gave the desired products in moderate to good yields in the presences of $BuAd_2P$ and t-BuOK in DMF at $120^{\circ}C$ after 15 h.

Keywords

References

  1. Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172. https://doi.org/10.1126/science.1141956
  2. Huang, D. S.; Hartwig, J. F. Angew. Chem. Int. Edit. 2010, 49, 5757. https://doi.org/10.1002/anie.201002328
  3. Larivee, A.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 52. https://doi.org/10.1021/ja710073n
  4. Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. https://doi.org/10.1021/ja8026295
  5. Inamoto, K.; Saito, T.; Hiroya, K.; Doi, T. J. Org. Chem. 2010, 75, 3900. https://doi.org/10.1021/jo100557s
  6. Ionita, M.; Roger, J.; Doucet, H. Chemsuschem 2010, 3, 367. https://doi.org/10.1002/cssc.200900258
  7. Wang, Y.; Xu, L. T.; Ma, D. W. Chem-Asian J. 2010, 5, 74. https://doi.org/10.1002/asia.200900523
  8. Zhao, J. L.; Huang, L. H.; Cheng, K.; Zhang, Y. H. Tetrahedron Lett. 2009, 50, 2758. https://doi.org/10.1016/j.tetlet.2009.03.124
  9. Li, M. Z.; Wang, C.; Fang, P.; Ge, H. B. Chem. Commun. 2011, 47, 6587. https://doi.org/10.1039/c1cc11635e
  10. Shang, R.; Yang, Z. W.; Wang, Y.; Zhang, S. L.; Liu, L. J. Am. Chem. Soc. 2010, 132, 14391. https://doi.org/10.1021/ja107103b
  11. Derridj, F.; Roger, J.; Geneste, F.; Djebbar, S.; Doucet, H. J. Organomet. Chem. 2009, 694, 455. https://doi.org/10.1016/j.jorganchem.2008.11.032
  12. Laidaoui, N.; Miloudi, A.; El Abed, D.; Doucet, H. Synthesis-Stuttgart 2010, 15, 2553.
  13. Godula, K.; Sames, D. Science 2006, 312, 67. https://doi.org/10.1126/science.1114731
  14. Cameron, M.; Foster, B. S.; Lynch, J. E.; Shi, Y. J.; Dolling, U. H. Org. Process Res. Dev. 2006, 10, 398. https://doi.org/10.1021/op050217j
  15. Hodgetts, K. J.; Kershaw, M. T. Org. Lett. 2003, 5, 2911. https://doi.org/10.1021/ol0350285
  16. Yamamoto, K.; Thiemann, T. J. Chem. Res. 2011, 35, 246. https://doi.org/10.3184/174751911X13025306846745
  17. Shirakawa, E.; Zhang, X. J.; Hayashi, T. Angew. Chem. Int. Edit. 2011, 50, 4671. https://doi.org/10.1002/anie.201008220
  18. Luo, Y.; Wu, J. Tetrahedron 2009, 65, 6810. https://doi.org/10.1016/j.tet.2009.06.089
  19. Li, B.; Wu, Z. H.; Gu, Y. F.; Sun, C. L.; Wang, B. Q.; Shi, Z. J. Angew. Chem. Int. Edit. 2011, 50, 1109. https://doi.org/10.1002/anie.201005394
  20. Fabrizi, G.; Goggiamani, A.; Sferrazza, A.; Cacchi, S. Angew. Chem. Int. Edit. 2010, 49, 4067. https://doi.org/10.1002/anie.201000472
  21. Calo, V.; Nacci, A.; Monopoli, A.; Cotugno, P. Angew. Chem. Int. Edit. 2009, 48, 6101. https://doi.org/10.1002/anie.200902337
  22. Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. https://doi.org/10.1039/c1cs15082k
  23. Ohkura, K.; Terashima, M.; Kanaoka, Y.; Seki, K. Chem. Pharm. Bull. 1993, 41, 1920. https://doi.org/10.1248/cpb.41.1920
  24. Zhao, D. B.; You, J. S.; Hu, C. W. Chem-Eur. J. 2011, 17, 5466. https://doi.org/10.1002/chem.201003039
  25. Roger, J.; Mom, S.; Beauperin, M.; Royer, S.; Meunier, P.; Ivanov, V. V.; Doucet, H.; Hierso, J. C. Chemcatchem 2010, 2, 296. https://doi.org/10.1002/cctc.200900294
  26. Chiong, H. A.; Daugulis, O. Org. Lett. 2007, 9, 1449. https://doi.org/10.1021/ol0702324
  27. Sahnoun, S.; Messaoudi, S.; Brion, J. D.; Alami, M. Org. Biomol. Chem. 2009, 7, 4271. https://doi.org/10.1039/b912033e
  28. Seki, K.; Ohkura, K.; Terashima, M.; Kanaoka, Y. Heterocycles 1986, 24, 799. https://doi.org/10.3987/R-1986-03-0799
  29. Doucet, H.; Hierso, J. C. Curr. Opin. Drug Disc. 2007, 10, 672.
  30. Ozdemir, I.; Gok, Y.; Ozeroglu, O.; Kaloglu, M.; Doucet, H.; Bruneau, C. Eur. J. Inorg. Chem. 2010, 2010, 1798.
  31. Roger, J.; Pozgan, F.; Doucet, H. Adv. Synth. Catal. 2010, 352, 696. https://doi.org/10.1002/adsc.200900793
  32. Gotturnukkala, A. L.; Doucet, H. Adv. Synth. Catal. 2008, 350, 2183. https://doi.org/10.1002/adsc.200800410
  33. Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. https://doi.org/10.1021/ja072718l
  34. Nakano, M.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1851. https://doi.org/10.1021/ol800466b
  35. Shi, W.; Liu, C.; Lei, A. W. Chem. Soc. Rev. 2011, 40, 2761. https://doi.org/10.1039/c0cs00125b
  36. Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902. https://doi.org/10.1039/c1cs15058h
  37. Dyker, G.; Korning, J.; Jones, P. G.; Bubenitschek, P. Angew. Chem. Int. Edit. 1993, 32, 1733. https://doi.org/10.1002/anie.199317331
  38. Mertins, K.; Iovel, I.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem. Int. Edit. 2005, 44, 238. https://doi.org/10.1002/anie.200460666
  39. Cao, H.; Shen, D. S.; Zhan, H. Y.; Yang, L. Q. Synlett 2011, 10, 1472.
  40. Park, C. H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. https://doi.org/10.1021/ol049866q
  41. Cao, H.; Zhan, H. Y.; Shen, D. S.; Zhao, H.; Liu, Y. J. Organomet. Chem. 2011, 696, 3086. https://doi.org/10.1016/j.jorganchem.2011.06.009
  42. Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1119.

Cited by

  1. Efficient One-Pot Synthesis of Multi-Substituted Dihydrofurans by Ruthenium(II)-Catalyzed [3+2] Cycloaddition of Cyclic or Acyclic Diazodicarbonyl Compounds with Olefins vol.355, pp.11-12, 2013, https://doi.org/10.1002/adsc.201300245
  2. Cross-Coupling of Heteroarenes by CH Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom vol.356, pp.1, 2014, https://doi.org/10.1002/adsc.201300922
  3. Aerobic and Efficient Direct Arylation of Five-Membered Heteroarenes and Their Benzocondensed Derivatives with Aryl Bromides by Bulky α-Hydroxyimine Palladium Complexes vol.34, pp.20, 2015, https://doi.org/10.1021/acs.organomet.5b00181
  4. A Powerful Method for the Direct Arylation of Furans at a Sterically Congested C−H Bond vol.5, pp.4, 2016, https://doi.org/10.1002/ajoc.201600057
  5. Palladium‐Catalyzed Oxidative Cycloisomerization of 2‐Cinnamyl‐1,3‐Dicarbonyls: Synthesis of Functionalized 2‐Benzyl Furans vol.21, pp.42, 2012, https://doi.org/10.1002/chem.201502781
  6. Directing-Group-Free, Carbonyl Group-Promoted Catalytic C-H Arylation of Bio-Based Furans vol.10, pp.None, 2012, https://doi.org/10.1021/acscatal.0c02143
  7. Direct (Hetero)arylation of Heteroarenes Catalyzed by Unsymmetrical Pd-PEPPSI-NHC Complexes under Mild Conditions vol.39, pp.19, 2012, https://doi.org/10.1021/acs.organomet.0c00494