References
- Li, Z. Q.; Ding, Y.; Xiong, Y. J.; Yang, Q.; Xie, Y. Chem. Commun. 2005, 7, 918.
- Dinsmore, A. D.; Hsu, M. F.; Nikolaides, M. G.; Marquez, M.; Bausch, A. R.; Weitz, D. A. Science 2002, 298, 1006. https://doi.org/10.1126/science.1074868
- Zhong, Z. Y.; Gates, Y. D.; Xia, B. Y. Adv. Mater 2000, 12, 206. https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<206::AID-ADMA206>3.0.CO;2-5
- Lee, K. T.; Jung, Y. S.; Oh, S. M. J. Am. Chem. Soc. 2003, 125, 5652. https://doi.org/10.1021/ja0345524
- Klimov, V.; Annu, I. Rev. Phys. Chem. 2007, 58, 635. https://doi.org/10.1146/annurev.physchem.58.032806.104537
- Li, L.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano Lett. 2001, 1, 349. https://doi.org/10.1021/nl015559r
- Kovtyuklhov, N. I.; Mallouk, T. E. Chem. Eur. 2002, J8, 4354.
- Zhu, J. X.; Gui, Z.; Ding, Y. Y.; Wang, Z. Z.; Hu, Y.; Zou, M. Q. J. Phys. Chem. 2007, C111, 5622.
- Han, D. Y.; Yang, H. Y.; Shen, C. B.; Zhou, X.; Wang, F. H. Powder Technol. 2004, 147, 113. https://doi.org/10.1016/j.powtec.2004.09.024
- Lenggoro, I. W.; Yoshifumi, I.; Noritaka, I.; Kikuo, O. Mater. Res. Bull. 2003, 38, 1819. https://doi.org/10.1016/j.materresbull.2003.08.005
- Zhao, B.; Bao, J. H.; Chen, H. L. Chin. J. Inorg. Chem. 2006, 56, 17.
- Haruta, M. Catal. Today 1997, 36, 153. https://doi.org/10.1016/S0920-5861(96)00208-8
- Liu, H. J.; Peng, T. Y.; Zhao, D. E.; Dai, K.; Peng, Z. H. Mater. Chem. Phys. 2004, 87, 81. https://doi.org/10.1016/j.matchemphys.2004.04.019
- Yang, O.; Sha, J.; Ma, X. Y.; Yang, D. R. Mater. Lett. 1967, 59, 2005.
- Liang, J. H.; Li, Y. D. Chem. Lett. 2003, 32, 1126. https://doi.org/10.1246/cl.2003.1126
- Sumit, B.; Ashwin, S.; Aruna, D.; Rao, P. M. Langmuir 2003, 19, 5522. https://doi.org/10.1021/la034420o
- Wang, W.; Liu, Y.; Xu, C.; Zheng, C.; Wang, G. Chem. Phys. Lett. 2002, 362, 119. https://doi.org/10.1016/S0009-2614(02)00996-X
- Liang, Z. H.; Zhu, Y. J.; Hu, X. L. J. Phys. Chem. B 2004, 108, 3488. https://doi.org/10.1021/jp037513n
- Wang, D. B.; Song, C. X.; Hu, Z. S.; Fu, X. J. J. Phys. Chem. B 2005, 109, 1125.
- CaiF, S.; Zhang, G. Y.; Chen, J.; Gou, X. L.; Liu, H. K.; Dou, S. X. Angew Chem. Int. Ed. 2004, 43, 4212. https://doi.org/10.1002/anie.200460053
- Yang, L. X.; Zhu, Y. J.; Tong, H.; Liang, Z. H.; Wang, W. W. Cryst Growth Des. 2007, 7, 2716. https://doi.org/10.1021/cg060530s
- Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. Nanotech. 2006, 17, 979. https://doi.org/10.1088/0957-4484/17/4/023
- Tost, R. M.; Gonzalez, J. S.; Torres, P. M.; Castellon, E. R.; Lopez, A. J. J. Mater. Chem. 2002, 12, 3331. https://doi.org/10.1039/b204041g
- Boschloo, G.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3039.
- Mattei, G.; Mazzoldi, P.; Post, M. L.; Buso, D.; Guglielmi, M.; Martucci, A. Adv. Mater. 2007, 19, 561. https://doi.org/10.1002/adma.200600930
- Dirksen, J. A.; Duval, K.; Ring, T. A. Sens Actuators B 2001, 80, 106. https://doi.org/10.1016/S0925-4005(01)00898-X
- Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, J.; Okada, M.; Mouri, T. J. J. Power Sources 1998, 74, 46. https://doi.org/10.1016/S0378-7753(98)00011-1
- Karlsson, J.; Roos, A. Sol Energy 2000, 68, 493. https://doi.org/10.1016/S0038-092X(00)00021-9
- Fantini, M. C. A.; Ferreira, F. F.; Gorenstein, A. Solid State Ionics 2002, 152-153, 867. https://doi.org/10.1016/S0167-2738(02)00387-9
- Wang, X.; Li, L.; Zhang, Y. G.; Wang, S. T.; Zhang, Z. D.; Fei, L. F.; Qian, Y. T. Cryst Growth Des. 2006, 6, 2163. https://doi.org/10.1021/cg060156w
- Mamak, M.; Coombs, N.; Ozin, G. A. Chem. Mater. 2001, 13, 3564. https://doi.org/10.1021/cm001259j
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496. https://doi.org/10.1038/35035045
- Ni, X. M.; Zhao, Q. B.; Zhou, F.; Zheng, H. G.; Cheng, J.; Li, B. B. J. Cryst. Growth 2006, 289-299, 33.
- Wu, Z. Y.; Liu, C. M.; Guo, L.; Hu, R.; Abbas, M. I.; Hu, T. D.; Xu, H. B. J. Phys. Chem. B 2005, 109, 2512. https://doi.org/10.1021/jp0466183
- Malandrino, G.; Perdicaro, L. M. S.; Fragala, I. L.; NigroR, L.; Losurdo, M.; Bruno, G. J. Phys. Chem. C 2007, 111, 3211. https://doi.org/10.1021/jp067696o
- Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J. 2006, 12, 2039. https://doi.org/10.1002/chem.200500660
- Masaaki, T.; Toshihiro, M.; Kousuke, K.; Ying, G. W. Inorg. Chim. Acta 2005, 358, 1823. https://doi.org/10.1016/j.ica.2004.10.031
- Oliva, P.; Leonardi, J.; Laurent, J. F.; Delmas, C.; Braconnier, J. J.; Figlarz, M.; Fievet, F.; de Guibert, A. J. Power Sources 1982, 8, 229. https://doi.org/10.1016/0378-7753(82)80057-8
- Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Mazaheri, M.; Monemzadeh, M.; Yavarinia, N. Inorg. Chim. Acta 2009, 362, 3691. https://doi.org/10.1016/j.ica.2009.04.025
- Yang, D.; Wang, R.; He, M.; Zhang, J.; Liu, Z. J. Phys. Chem. B 2005, 109, 7654. https://doi.org/10.1021/jp050083b
Cited by
- Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction vol.2014, pp.1687-9511, 2014, https://doi.org/10.1155/2014/193162
- Stable Ni Nanoparticle–Reduced Graphene Oxide Composites for the Reduction of Highly Toxic Aqueous Cr(VI) at Room Temperature vol.30, pp.11, 2014, https://doi.org/10.1021/la500156e
- Effects of Laser Energy Density on Size and Morphology of NiO Nanoparticles Prepared by Pulsed Laser Ablation in Liquid vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10040
- Effect of PEG6000 on the morphology the β-Ni(OH)2 nanostructures: solvothermal synthesis, characterization, and formation mechanism vol.41, pp.4, 2015, https://doi.org/10.1007/s11164-013-1332-8
- Influence of preparation methods on the structure and catalytic performance of nanostructured La0.7Ba0.3Co0.3Ni0.7O3 for CO oxidation vol.117, pp.2, 2016, https://doi.org/10.1007/s11144-015-0965-6
- A Versatile Combustion Synthesis and Properties of Nickel Oxide (NiO) Nanoparticles vol.29, pp.8, 2016, https://doi.org/10.1007/s10948-016-3535-x
- Synthesis of nanostructured adsorbent and dye adsorption modeling by an intelligent model for multicomponent systems vol.33, pp.3, 2016, https://doi.org/10.1007/s11814-015-0198-4
- nanocomposite and artificial neural network modeling vol.36, pp.1, 2016, https://doi.org/10.1002/ep.12452
- Electrocatalytic Alfuzosin Oxidation on Electrochemically Oxidized Glassy Carbon Modified with Multiwalled Carbon Nanotubes and Nickel Oxide Nanoparticles vol.166, pp.2, 2019, https://doi.org/10.1149/2.0651902jes
- Eco-friendly green synthesis: catalytic activity of nickel hydroxide nanoparticles vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab04e4
- Synthesis and characterisation of AlB2 nanopowders by solid state reaction vol.9, pp.2, 2012, https://doi.org/10.1049/mnl.2013.0665
- Production and Characterization of Electroactive Nickel Oxides Grown on Nickel Foam by Anodic Oxidation in KOH Melts for Supercapacitor Applications vol.2, pp.54, 2012, https://doi.org/10.1557/adv.2017.347
- Capacitance performance of NiO thin films synthesized by direct and pulse potentiostatic methods vol.25, pp.12, 2012, https://doi.org/10.1007/s11581-019-03159-2