References
- Lindsley, C. W.; Zhao, Z.; Leister, W. H.; Robinson, R. G.; Barnett, S. F.; Defeo-Jones, D.; Jones, R. E.; Hartman, G. D.; Huff, J. R.; Huber, H. E.; Duggan, M. E. Bioorg. Med. Chem. Lett. 2005, 15, 761. https://doi.org/10.1016/j.bmcl.2004.11.011
- Loriga, M.; Piras, S.; Sanna, P.; Paglietti, G. Farmaco 1997, 52, 157.
- Seitz, L. E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604. https://doi.org/10.1021/jm020310n
- He, W.; Myers, M. R.; Hanney, B.; Spada, A. P.; Bilder, G.; Galzinski, H.; Amin, D.; Needle, S.; Page, K.; Jayyosi, Z.; Perrone, M. H. Bioorg. Med. Chem. Lett. 2003, 13, 3097. https://doi.org/10.1016/S0960-894X(03)00655-3
- Kim, Y. B.; Kim, Y. H.; Park, J. Y.; Kim, S. K. Bioorg. Med. Chem. Lett. 2004, 14, 541. https://doi.org/10.1016/j.bmcl.2003.09.086
- Katoh, A.; Yoshida, T.; Ohkanda, J. Heterocycles 2000, 52, 911. https://doi.org/10.3987/COM-99-S61
- Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C. H.; Tao, Y. T. Chem. Mater. 2005, 17, 1860. https://doi.org/10.1021/cm047705a
- Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J. Mater. Chem. 2001, 11, 2238. https://doi.org/10.1039/b104674h
- Sessler, J. L.; Maeda, H.; Mizuno, T.; Lynch, V. M.; Furuta, H. J. Am. Chem. Soc. 2002, 124, 13474. https://doi.org/10.1021/ja0273750
- Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 1122.
- Yamaguchi, T.; Matsumoto, S.; Watanabe, K. Tetrahedron Lett. 1998, 39, 8311. https://doi.org/10.1016/S0040-4039(98)01859-0
- Dell, A.; William, D. H.; Morris, H. R.; Smith, G. A.; Feeney, J.; Roberts, G. C. K. J. Am. Chem. Soc. 1975, 97, 2497. https://doi.org/10.1021/ja00842a029
- Bailly, C.; Echepare, S.; Gago, F.; Waring, M. Anti-Cancer Drug Des. 1999, 15, 291.
- Sato, S.; Shiratori, O.; Katagiri, K. J. Antibiot. 1967, 20, 270.
- Beheshtiha, Y. S.; Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Hossieni, N. T. Synth. Commun. 2010, 40, 1216. https://doi.org/10.1080/00397910903062280
- Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V. Synth. Commun. 2008, 38, 3601. https://doi.org/10.1080/00397910802054271
- Dong, F.; Kai, G.; Zhenghao, F.; Xinli, Z.; Zuliang, L. Catal. Commun. 2008, 9, 317. https://doi.org/10.1016/j.catcom.2007.07.003
- Porter, A. E. A. In Comprehensive Heterocyclic Chemistry; Katritsky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, 1984; pp 157-197.
- Brown, D. J. Quinoxalines: Supplement II. In The Chemistry of Heterocyclic Compounds; Taylor, E. C., Wipf, P., Eds.; John Wiley & Sons: New Jersey, 2004.
- Bhosale, R. S.; Sarda, S. R.; Ardhapure, S. S.; Jadhav, W. N.; Bhusare, S. R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183. https://doi.org/10.1016/j.tetlet.2005.08.080
- More, S. V.; Sastry, M. N. V.; Wang, C. C.; Yao, C. F. Tetrahedron Lett. 2005, 46, 6345. https://doi.org/10.1016/j.tetlet.2005.07.026
- Darabi, H. R.; Mohandessi, S.; Aghapoor, K.; Mohsenzadeh, F. Catal. Commun. 2007, 8, 389. https://doi.org/10.1016/j.catcom.2006.06.033
- Huang, T. K.; Wang, R.; Shi, L.; Lu, X. X. Catal. Commun. 2008, 9, 1143. https://doi.org/10.1016/j.catcom.2007.10.024
- Srinivas, C.; Kumar, C. N. S. S. P.; Rao, J. V.; Palaniappan, S. J. Mol. Catal. A: Chem. 2007, 265, 227. https://doi.org/10.1016/j.molcata.2006.10.018
- Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F.; Tehrani, M. H. Monatsh. Chem. 2007, 138, 465. https://doi.org/10.1007/s00706-007-0594-5
- Hazarika, P.; Gogoi, P.; Konwar, D. Synth. Commun. 2007, 37, 3447. https://doi.org/10.1080/00397910701489388
- Heravi, M. M.; Bakhtiari, K.; Oskooie, H. A.; Taheri, S. Heteroat. Chem. 2008, 19, 218. https://doi.org/10.1002/hc.20401
- Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H. A. Catal. Commun. 2007, 8, 211. https://doi.org/10.1016/j.catcom.2006.06.013
- Meshram, H. M.; Ramesh, P.; Kumar, G. S.; Reddy, B. C. Tetrahedron Lett. 2010, 51, 4313. https://doi.org/10.1016/j.tetlet.2010.05.099
- More, S. V.; Sastry, M. N. V.; Yao, C.-F. Green Chem. 2006, 8, 91. https://doi.org/10.1039/b510677j
- Cai, J.-J.; Zou, J.-P.; Pan, X.-Q.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386. https://doi.org/10.1016/j.tetlet.2008.10.058
- Alinezhad, H.; Tajbakhsh, M.; Salehian, F.; Biparva, P. Bull. Korean Chem. Soc. 2011, 32, 3720. https://doi.org/10.5012/bkcs.2011.32.10.3720
- Begue, J. P.; Bonnet-Delpon, D.; Crousse, B. Synlett 2004, 18.
- Povey, J. F.; Smales, C. M.; Hassard, S. J.; Howard, M. J. J. Struct. Biol. 2007, 157, 329. https://doi.org/10.1016/j.jsb.2006.07.008
- Westermaier, M.; Mayr, H. Org. Lett. 2006, 8, 4791. https://doi.org/10.1021/ol0618555
- Ratnikov, M. O.; Tumanov, V. V.; Smit, W. A. Angew. Chem., Int. Ed. 2008, 47, 9739. https://doi.org/10.1002/anie.200803927
- Westermaier, M.; Mayr, H. Chem. Eur. J. 2008, 14, 1638. https://doi.org/10.1002/chem.200701366
- De, K.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. J. Org. Chem. 2009, 74, 6260. https://doi.org/10.1021/jo9012699
- Nishiwaki, N.; Kamimura, R.; Shono, K.; Kawakami, T.; Nakayama, K.; Nishino, K.; Nakayama, T.; Takahashi, K.; Nakamura, A.; Hosokawa, T. Tetrahedron Lett. 2010, 51, 3590. https://doi.org/10.1016/j.tetlet.2010.05.014
- Choy, J.; Jaime-Figueroa, S.; Lara-Jaime, T. Tetrahedron Lett. 2010, 51, 2244. https://doi.org/10.1016/j.tetlet.2010.02.100
- Kuroiwa, Y.; Matsumura, S.; Toshima, K. Synlett 2008, 2523.
- Tanabe, H.; Ichikawa, J. Chem. Lett. 2010, 39, 248. https://doi.org/10.1246/cl.2010.248
- Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639. https://doi.org/10.1021/ol702279w
- Ben-Daniel, R.; de Visser, S. P.; Shaik, S.; Neumann, R. J. Am. Chem. Soc. 2003, 125, 12116. https://doi.org/10.1021/ja0364524
- Kobayashi, S.; Tanaka, H.; Amii, H.; Uneyama, K. Tetrahedron 2003, 59, 1547. https://doi.org/10.1016/S0040-4020(03)00047-4
- Neimann, K.; Neumann, R. Org. Lett. 2000, 2, 2861. https://doi.org/10.1021/ol006287m
- Ravikumar, K. S.; Zhang, Y. M.; Bégué, J. P.; Bonnet-Delpon, D. Eur. J. Org. Chem. 1998, 2937.
- Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue, J. P. Eur. J. Org. Chem. 2002, 3290.
- Azzouzi-Zriba, K.; Bonnet-Delpon, D.; Crousse, B. J. Fluorine Chem. 2011, 132, 811. https://doi.org/10.1016/j.jfluchem.2010.12.014
- Heydari, A.; Khaksar, S.; Tajbakhsh, M. Synthesis 2008, 19, 3126.
- Heydari, A.; Khaksar, S.; Tajbakhsh, M. Tetrahedron Lett. 2009, 50, 77. https://doi.org/10.1016/j.tetlet.2008.10.106
- Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem. 2009, 130, 609. https://doi.org/10.1016/j.jfluchem.2009.03.014
- Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Bijanzadeh, H. R. J. Fluorine Chem. 2010, 131, 106. https://doi.org/10.1016/j.jfluchem.2009.10.003
- Heydari, A.; Khaksar, S.; Tajbakhsh, M.; Vahdat, S. M. J. Fluorine Chem. 2010, 131, 1377. https://doi.org/10.1016/j.jfluchem.2010.10.002
- Tajbakhsh, M.; Hosseinzadeh, R.; Alinezhad, H.; Ghahari, S.; Heydari, A.; Khaksar, S. Synthesis 2011, 490.
- Khaksar, S.; Heydari, A.; Tajbakhsh, M.; Vahdat, S. M. J. Fluorine Chem. 2010, 131, 1377. https://doi.org/10.1016/j.jfluchem.2010.10.002
Cited by
- Nuclear-Chemical Synthesis of 1,4-Diazine Quaternary Salts vol.02, pp.02, 2013, https://doi.org/10.4236/ojsta.2013.22006
- An expedient “on-water” synthesis of quinoxalines vol.145, pp.10, 2014, https://doi.org/10.1007/s00706-014-1242-5
- Transition metal-free one-pot synthesis of nitrogen-containing heterocycles vol.20, pp.1, 2016, https://doi.org/10.1007/s11030-015-9596-0
- Nucleophilic Substitution on 2-Monosubstituted Quinoxalines Giving 2,3-Disubstituted Quinoxalines: Investigating the Effect of the 2-Substituent vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101304
- Design and Synthesis of Some New Quinoxaline-Based Heterocycles pp.0022152X, 2018, https://doi.org/10.1002/jhet.2978
- Fe3O4@FeSO4-MCM-41 Nanoparticles and Reusable Catalyst for the Synthesis of Quinoxalines in Solvent-free Conditions vol.10, pp.4, 2018, https://doi.org/10.1007/s12633-017-9651-9
- )-dithione: Synthesis and reactions vol.193, pp.6, 2018, https://doi.org/10.1080/10426507.2018.1424166
- Luminescent Anticancer Acenaphtho[1, 2‐b]quinoxaline: Green Synthesis, DFT and Molecular Docking Studies, Live‐Cell Imaging and Reactivity towards Nucleic Acid and Protein BSA vol.3, pp.19, 2018, https://doi.org/10.1002/slct.201800487
- Synthesis and Antimicrobial Activity of Some New Substituted Quinoxalines vol.24, pp.22, 2012, https://doi.org/10.3390/molecules24224198
- An environmentally benign attribute for the expeditious synthesis of quinoxaline and its derivatives vol.1198, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2019.07.005
- Solvent-mediated Highly Efficient Synthesis of [1,2,4]triazolo/benzimidazoloquinazolinone Derivatives vol.16, pp.8, 2012, https://doi.org/10.2174/1570179416666191018145142
- Organocatalytic Combinatorial Synthesis of Quinazoline, Quinoxaline and Bis(indolyl)methanes vol.23, pp.1, 2020, https://doi.org/10.2174/1386207323666191213123026
- A newly synthesized nitrogen‐rich derivative of bicyclic quinoxaline—Structural and conceptual DFT reactivity study vol.33, pp.6, 2012, https://doi.org/10.1002/poc.4055
- A Facile C‐H Insertion Strategy using Combination of HFIP and Isocyanides: Metal‐Free Access to Azole Derivatives vol.9, pp.11, 2012, https://doi.org/10.1002/ajoc.202000481
- A General Method for the Synthesis of 11H-Indeno[1,2-B]Quinoxalin- 11-Ones and 6H-Indeno[1,2-B]Pyrido[3,2-E]Pyrazin-6-One Derivatives Using Mandelic Acid as an Efficient Organo-Catalyst at Room Temper vol.8, pp.None, 2012, https://doi.org/10.2174/2213337208666210825112301
- Novel Synthetic Routes to Prepare Biologically Active Quinoxalines and Their Derivatives: A Synthetic Review for the Last Two Decades vol.26, pp.4, 2012, https://doi.org/10.3390/molecules26041055
- A general method for the synthesis of structurally diverse quinoxalines and pyrido-pyrazine derivatives using camphor sulfonic acid as an efficient organo-catalyst at room temperature vol.51, pp.7, 2012, https://doi.org/10.1080/00397911.2021.1873383
- Silica supported dodecatungstophosphoric acid (DTP/SiO2): An efficient and recyclable heterogeneous catalyst for rapid synthesis of quinoxalines vol.51, pp.16, 2012, https://doi.org/10.1080/00397911.2021.1939060
- Csp-Csp bond cleavage and fragment coupling: a transition metal-free “extrusion and recombination” approach towards synthesis of 1,2-diketones vol.8, pp.19, 2021, https://doi.org/10.1039/d1qo00848j