References
- Ishigawa, T. Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; John Wiley & Sons: 2009.
- Haflinger, G.; Kuske, F. K. H. The Chemistry of Amidines and Imidates; John Wiley & Sons: Chichester, 1991.
- Gladysz, J. A. Chem. Rev. 2002, 102, 3215. https://doi.org/10.1021/cr020068s
- Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102, 3217. https://doi.org/10.1021/cr010361c
- Hu, A.; Yee, G. T.; Lin, W. J. Am. Chem. Soc. 2005, 127, 12486. https://doi.org/10.1021/ja053881o
- Shylesh, S.; Schunemann, V.; Thiel, W. R. Angew. Chem. Int. Ed. 2010, 49, 3428. https://doi.org/10.1002/anie.200905684
- Ranganath, K. V. S.; Glorius, F. Catal. Sci. Technol. 2011, 1, 13. https://doi.org/10.1039/c0cy00069h
- Polshettiwar, V.; Luque, R.; Fihri, A.; Zhu, H.; Bouhrara, M.; Basset, J. M. Chem. Rev. 2011, 111, 3036. https://doi.org/10.1021/cr100230z
- Macquarrie, D. J.; Jackson, D. B.; Tailland, S.; Utting, K. A. J. Mater. Chem. 2001, 11, 1843. https://doi.org/10.1039/b100957p
- Kim, K. S.; Somg, J. H.; Kim, J. H.; Seo, G. Stud. Surf. Sci. Catal. 2003, 146, 505. https://doi.org/10.1016/S0167-2991(03)80432-9
- Phan, N. T. S.; Jones, C. W. J. Mol. Catal. A 2006, 253, 123. https://doi.org/10.1016/j.molcata.2006.03.019
- Gelbard, G.; Vielfaure-Joly, F. Tetrahedron Lett. 1998, 39, 2743. https://doi.org/10.1016/S0040-4039(98)00300-1
- Yang, D.; Hu, J.; Fu, S. J. Phys. Chem. C 2009, 113, 7646. https://doi.org/10.1021/jp900868d
- Stober, W.; Fink, A.; Bohn, E. J. J. Colloid Interface Sci. 1968, 26, 62. https://doi.org/10.1016/0021-9797(68)90272-5
- Zeng, T.; Yang, L.; Hudson, R.; Song, G.; Moores, A.-R.; Li, C.-J. Org. Lett. 2011, 13, 442. https://doi.org/10.1021/ol102759w
- Abdolmohammadi, S.; Balalaie, S. Tetrahedron Lett. 2007, 48, 3299. https://doi.org/10.1016/j.tetlet.2007.02.135
- Kumar, D.; Reddy, V. B.; Sharad, S.; Dube, U.; Kapur, S. Eur. J. Med. Chem. 2009, 44, 3805. https://doi.org/10.1016/j.ejmech.2009.04.017
- Yang, T. Z.; Shen, C. M.; Gao, H. J. J. Phys. Chem. B 2005, 109, 23233. https://doi.org/10.1021/jp054291f
- Giri, J.; Thakurta, S. G.; Bellare, J.; Nigam, A. K.; Bahadur, D. J. Magn. Magn. Mater. 2005, 293, 62. https://doi.org/10.1016/j.jmmm.2005.01.044
- Waldron, R. D. Phys. Rev. 1955, 99, 1727. https://doi.org/10.1103/PhysRev.99.1727
- Yamaura, M.; Camiloa, R. L.; Sampaio, L. C.; Macedo, M. A.; Nakamura, M.; Toma, H. E. J. Magn. Magn. Mater. 2004, 279, 210. https://doi.org/10.1016/j.jmmm.2004.01.094
- Gunasekaran, S.; Natarajan, R. K.; Renganayaki, V.; Natarajan, S. Indian. J. Pure & Applied Physics 2006, 44, 495.
- Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. J. Colloid Interface Sci. 2010, 349, 293. https://doi.org/10.1016/j.jcis.2010.05.010
- Lei, Z.; Li, Y.; Wei, X. J. Solid State Chem. 2008, 181, 480. https://doi.org/10.1016/j.jssc.2007.12.004
- Chang, Y. C.; Chen, D. H. J. Colloid Interface Sci. 2005, 283, 446. https://doi.org/10.1016/j.jcis.2004.09.010
- Naka, K.; Narital, A.; Tanakal, H.; Chujo, Y.; Morita, M.; Inubushi, T.; Nishimura, I.; Hiruta, J.; Shibayama, H.; Koga, M.; Ishibashi, S.; Seki, J.; Kizaka-Kondoh, S.; Hiraoka, M. Polym. Adv. Technol. 2008, 19, 1421. https://doi.org/10.1002/pat.1218
- Ohandley, R. C. Modern Magnetic Materials: Principles and Applicat Ions; Wiley: New York, 2000.
- Iida, R. H.; Takayanagi, K.; Nakanishi, T.; Osaka, T. J. Colloid Interface Sci. 2007, 314, 274. https://doi.org/10.1016/j.jcis.2007.05.047
- ChengLin, G. W.; Huan, H.; HongJun, G.; Gan, L.; RuJiang, M.; YingLi, A.; LinQi, S. Sci. China Chem. 2010, 53, 514. https://doi.org/10.1007/s11426-010-0084-1
- Zhou, C. L.; Zhou, Y. Q.; Wang, Z. Y. Chinese Chem. Lett. 2003, 14, 355.
- Bray, C. V.; Jiang, F.; Wu, X. F.; Sortais, J.-B.; Darcel, C. Tetrahedron Lett. 2010, 51, 4555. https://doi.org/10.1016/j.tetlet.2010.06.106
- Abdolmohammadi, S.; Balalaie, S. Tetrahedron Lett. 2007, 48, 3299. https://doi.org/10.1016/j.tetlet.2007.02.135
- Heravi, M. M.; Alimadadi-Jani, B.; Derikvand, F.; Bamoharram, F. F.; Oskooie, H. A. Catal. Commun. 2008, 10, 272. https://doi.org/10.1016/j.catcom.2008.08.023
- Wang, L. M.; Shao, J. H.; Tian, H.; Wang, Y. H.; Liu, B. J. Fluorine Chem. 2006, 127, 97. https://doi.org/10.1016/j.jfluchem.2005.10.004
- Hekmatshoar, R.; Majedi, S.; Bakhtiari, K. Catal. Commun. 2008, 9, 307. https://doi.org/10.1016/j.catcom.2007.06.016
Cited by
- N-propylpiperazine sulfonic acid immobilized on Fe3O4 magnetic silica nanoparticles: an efficient and heterogeneous catalyst for the one-pot synthesis of 9H-xanthene or methylenediphenol derivatives under solvent-free conditions vol.112, pp.1, 2014, https://doi.org/10.1007/s11144-014-0686-2
- Magnetically recoverable nanoparticles as efficient catalysts for organic transformations in aqueous medium vol.16, pp.7, 2014, https://doi.org/10.1039/C4GC00458B
- Magnetic solid phase adsorption, preconcentration and determination of methyl orange in water samples using silica coated magnetic nanoparticles and central composite design vol.4, pp.4, 2014, https://doi.org/10.1007/s40089-014-0124-5
- core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media vol.8, pp.3-4, 2015, https://doi.org/10.1080/17518253.2015.1107139
- N-Propylcarbamothioyl benzamide complex of Bi(III) supported on superparamagnetic Fe3O4/SiO2 nanoparticles as a highly efficient and magnetically recoverable heterogeneous nanocatalyst for the one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones (DHPMs) via the Biginelli reaction vol.117, pp.1, 2016, https://doi.org/10.1007/s11144-015-0931-3
- Recent advances in catalysts immobilized on magnetic nanoparticles vol.13, pp.10, 2016, https://doi.org/10.1007/s13738-016-0900-4
- Recyclable organocatalysts based on hybrid silicas vol.18, pp.4, 2016, https://doi.org/10.1039/C5GC02579F
- Preparation, characterization, and use of poly(vinylpyrrolidonium) hydrogen phosphate ([PVP-H]H2PO4) as a new heterogeneous catalyst for efficient synthesis of 2-amino-tetrahydro-4H-pyrans vol.42, pp.5, 2016, https://doi.org/10.1007/s11164-015-2312-y
- Urea-functionalized silica-coated Fe3−x Ti x O4 magnetic nanoparticles: as highly efficient and recyclable heterogeneous nanocatalyst for synthesis of 4H-chromene and 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives vol.14, pp.2, 2017, https://doi.org/10.1007/s13738-016-0989-5
- Ferromagnetic nanoparticle-supported copper complex: A highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides vol.31, pp.10, 2017, https://doi.org/10.1002/aoc.3714
- :F Layer vol.64, pp.12, 2017, https://doi.org/10.1002/jccs.201700256
- Synthesis and characterization of magnetically recoverable 1-(copperferritesiloxypropyl)-3-methylimidazolium heteropolytungstate ionic liquid as a new nanocatalyst for the preparation of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones vol.7, pp.4, 2017, https://doi.org/10.1007/s40097-017-0241-6
- Heteropolytungstostannate as a homo- and heterogeneous catalyst for Knoevenagel condensations, selective oxidation of sulfides and oxidative amination of aldehydes vol.7, pp.72, 2017, https://doi.org/10.1039/C7RA06112A
- -supported boron sulfonic acid as a novel magnetically heterogeneous catalyst for the synthesis of pyrano coumarins vol.7, pp.74, 2017, https://doi.org/10.1039/C7RA08253C
- Design and characterization of Dendrimer of MNPs as a novel, heterogeneous and reusable nanomagnetic organometallic catalyst for one-pot synthesis of hydroxyl naphthalene-1,4-dione derivatives under solvent-free conditions vol.32, pp.3, 2017, https://doi.org/10.1002/aoc.4183
- -Chromenes Assisted by Poly(4-Vinylpyridine) pp.1563-5333, 2018, https://doi.org/10.1080/10406638.2018.1450271
- A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography vol.185, pp.3, 2018, https://doi.org/10.1007/s00604-018-2713-x
- Facile pathway for synthesis of two efficient catalysts for preparation of 2-aminothiophenes and tetrahydrobenzo[b]pyrans vol.44, pp.3, 2018, https://doi.org/10.1007/s11164-017-3223-x
- L-arginine modified magnetic nanoparticles: green synthesis and characterization vol.29, pp.7, 2018, https://doi.org/10.1088/1361-6528/aaa2b5
- Magnetic solid-phase extraction using Schiff base ligand supported on magnetic nanoparticles as sorbent combined with dispersive liquid-liquid microextraction for the extraction of phenols from water samples vol.98, pp.11, 2018, https://doi.org/10.1080/03067319.2018.1519071
- Nano-Fe3O4@SiO2–TiCl3 as a novel nano-magnetic catalyst for the synthesis of 4H-pyrimido[2,1-b]benzothiazoles vol.44, pp.10, 2018, https://doi.org/10.1007/s11164-018-3498-6
- ]pyrimidinone derivatives vol.32, pp.7, 2018, https://doi.org/10.1002/aoc.4371
- Synthesis of carboxyl-functionalized magnetic nanoparticles for adsorption of malachite green from water: Kinetics and thermodynamics studies vol.65, pp.8, 2018, https://doi.org/10.1002/jccs.201700361
- Fe3O4 magnetic nanoparticles coated with a copolymer: a novel reusable catalyst for one-pot three-component synthesis of 2-amino-4H-chromene vol.124, pp.2, 2018, https://doi.org/10.1007/s11144-018-1361-9
- immobilized on dipeptide-functionalized silica-coated magnetite nanoparticles as a catalyst for the selective aerobic oxidation of alcohols vol.42, pp.14, 2018, https://doi.org/10.1039/C8NJ00781K
- Particles vol.367, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/367/1/012010
- vol.32, pp.5, 2018, https://doi.org/10.1002/aoc.4323
- Cross-linked poly(dimethylaminoethyl acrylamide) coated magnetic nanoparticles: a high loaded, retrievable, and stable basic catalyst for the synthesis of benzopyranes in water vol.4, pp.91, 2014, https://doi.org/10.1039/c4ra07503j
- Facile synthesis of methyl propylaminopropanoate functionalized magnetic nanoparticles for removal of acid red 114 from aqueous solution vol.6, pp.114, 2012, https://doi.org/10.1039/c6ra22710d
- Silica-modified magnetite Fe3O4 nanoparticles grafted with sulfamic acid functional groups: an efficient heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-on vol.37, pp.6, 2012, https://doi.org/10.1080/17415993.2016.1177055
- Preparation of Fe3O4/SiO2-guanidine organobase catalyst for 1,5-diphenylpenta-2,4-dien-1-one synthesis vol.188, pp.None, 2017, https://doi.org/10.1088/1757-899x/188/1/012026
- Composites of Fe3O4/SiO2from Natural Material Synthesized by Co-Precipitation Method vol.202, pp.None, 2012, https://doi.org/10.1088/1757-899x/202/1/012057
- Sulfonic Acid Functionalized Magnetite Nanoporous-KIT-6 for Removal of Methyl Green from Aqueous Solutions vol.52, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/jnanor.52.54
- Chemical Vapour Deposition of MWCNT on Silica Coated Fe3O4 and Use of Response Surface Methodology for Optimizing the Extraction of Organophosphorus Pesticides from Water vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/4564709
- A novel protocol for the synthesis of pyrano[2,3-h]coumarins in the presence of Fe3O4@SiO2@(CH2)3OCO2Na as a magnetically heterogeneou vol.43, pp.12, 2019, https://doi.org/10.1039/c8nj06415f
- Fe3O4@SiO2-BenzIm-Fc[Cl]/ZnCl2: a novel and efficient nano-catalyst for the one-pot three-component synthesis of pyran annulated bis-heterocyclic scaffolds under ultrasound irradiation vol.45, pp.4, 2019, https://doi.org/10.1007/s11164-018-3704-6
- Hyperactive Magnetically Separable Nano-sized MgFe2O4 Catalyst for the Synthesis of Several Five- and Six-Membered Heterocycles vol.13, pp.2, 2019, https://doi.org/10.23939/chcht13.02.163
- Structure and magnetic properties of silica-coated magnetite-nanoparticle composites vol.6, pp.8, 2012, https://doi.org/10.1088/2053-1591/ab29af
- From the Shelf to the Particle: Preparation of Highly Organic-Functionalized Magnetic Composites via 4-Nitrophenyl Reactive Ester vol.84, pp.16, 2019, https://doi.org/10.1021/acs.joc.9b01122
- Amine modified nanozeolites for the three component synthesis of chromenes vol.45, pp.9, 2012, https://doi.org/10.1007/s11164-019-03858-5
- Application of Box-Behnken Design in Synthesis of 2-Amino-5-oxo-5,6,7,8-Tetrahydro-4H-Chromenes Using Tetrabutylammonium Hydrogen Sulfate (TBAHS) vol.51, pp.5, 2012, https://doi.org/10.1080/00304948.2019.1644948
- Synthesis, Characterization and Catalytic Activity of Magnetic KI@Fe3O4 Nanoparticles for Henry Reaction Under Solvent Free Conditions vol.149, pp.10, 2012, https://doi.org/10.1007/s10562-019-02814-7
- Tandem Oxidative Pudovik Reaction Using Fe3O4@SiO2‐Metformin‐Cu (II) as an Efficient and Recoverable Catalyst vol.5, pp.14, 2012, https://doi.org/10.1002/slct.201904662
- 3‐Amino‐5‐mercapto‐1,2,4‐triazole‐functionalized Fe3O4 magnetic nanocomposite as a green and efficient catalyst for synthesis of bis(indolyl)m vol.34, pp.6, 2012, https://doi.org/10.1002/aoc.5641
- The chemistry of biguanides: from synthetic routes to applications in organic chemistry vol.98, pp.6, 2012, https://doi.org/10.1139/cjc-2019-0371
- Oxidative amidation by Cu(II)-guanidine acetic acid immobilized on magnetized sawdust with eggshell as a natural base vol.44, pp.27, 2012, https://doi.org/10.1039/d0nj00835d
- Role of silica coated magnetic nanoparticle on cell flocculation, lipid extraction and linoleic acid production from Chlorella pyrenoidosa vol.34, pp.19, 2012, https://doi.org/10.1080/14786419.2019.1593164
- Ionic liquid-decorated Fe3O4@SiO2 nanocomposite coated on talc sheets: An efficient adsorbent for methylene blue in aqueous solution vol.121, pp.None, 2020, https://doi.org/10.1016/j.inoche.2020.108204
- Melamine: An Efficient Promoter for Some of the Multi-component Reactions vol.41, pp.1, 2012, https://doi.org/10.1080/10406638.2019.1570949
- Synthesis of 1,8-Dioxo-octahydro-xanthene and Tetrahydrobenzo[b]pyran Derivatives Promoted by two Bis-imidazolium-based Ionic Liquids vol.8, pp.None, 2012, https://doi.org/10.2174/2213337208666210726141934
- Magnetic Nanoparticles Functionalized with Copper Hydroxyproline Complexes as an Efficient, Recoverable, and Recyclable Nanocatalyst: Synthesis and Its Catalytic Application in a Tandem Knoevenagel-Mi vol.60, pp.19, 2021, https://doi.org/10.1021/acs.inorgchem.1c02470
- Introducing rGO@Fe3O4@Ni as an efficient magnetic nanocatalyst for the synthesis of tetrahydrobenzopyranes via multicomponent coupling reactions of dimedone, malononitrile, and a vol.36, pp.2, 2012, https://doi.org/10.1002/aoc.6496