DOI QR코드

DOI QR Code

Performance Enhancement by Adaptation of Long Term Chronoamperometry in Direct Formic Acid Fuel Cell using Palladium Anode Catalyst

  • Kwon, Yong-Chai (Graduate School of Energy and Environment, Seoul National University of Science and Technology) ;
  • Baik, S.M. (Department of Chemical Engineering, Kyung Hee University) ;
  • Han, Jong-Hee (Fuel Cell Research Center, KIST) ;
  • Kim, Jin-Soo (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2012.04.13
  • Accepted : 2012.04.30
  • Published : 2012.08.20

Abstract

In the present study, we suggest a new way to reactivate performance of direct formic acid fuel cell (DFAFC) and explain its mechanism by employing electrochemical analyses like chronoamperometry (CA) and cyclic voltammogram (CV). For the evaluation of DFAFC performance, palladium (Pd) and platinum (Pt) are used as anode and cathode catalysts, respectively, and are applied to a Nafion membrane by catalyst-coated membrane spraying. After long DFAFC operation performed at 0.2 and 0.4 V and then CV test, DFAFC performance is better than its initial performance. It is attributed to dissolution of anode Pd into $Pd^{2+}$. By characterizations like TEM, Z-potential, CV and electrochemical impedance spectroscopy, it is evaluated that such dissolved $Pd^{2+}$ ions lead to (1) increase in the electrochemically active surface by reduction in Pd particle size and its improved redistribution and (2) increment in the total oxidation charge by fast reaction rate of the Pd dissolution reaction.

Keywords

References

  1. Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources 2005, 144, 28. https://doi.org/10.1016/j.jpowsour.2004.12.031
  2. Yu, X.; Pickup, P. G. J. Power Sources 2008, 182, 124. https://doi.org/10.1016/j.jpowsour.2008.03.075
  3. Yu, X.; Pickup, P. G. J. Power Sources 2009, 187, 493. https://doi.org/10.1016/j.jpowsour.2008.11.014
  4. Acres, G. J. K. J. Power Sources 2001, 100, 60. https://doi.org/10.1016/S0378-7753(01)00883-7
  5. Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245. https://doi.org/10.1021/cr020730k
  6. Choi, H.; Kim, J.; Kwon, Y.; Han, J. J. Power Sources 2010, 195, 160. https://doi.org/10.1016/j.jpowsour.2009.06.106
  7. Neburchilov, V.; Martin, J.; Wang, H. J.; Zhang, J. J. J. Power Sources 2007, 169, 221. https://doi.org/10.1016/j.jpowsour.2007.03.044
  8. Demirci, U. B. J. Power Sources 2007, 169, 239. https://doi.org/10.1016/j.jpowsour.2007.03.050
  9. Song, S. Q.; Maragou, V.; Tsiakaras, P. J. Fuel Cell Sci. Technol. 2007, 4, 203. https://doi.org/10.1115/1.2393312
  10. Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R. I. J. Power Sources 2006, 157, 78. https://doi.org/10.1016/j.jpowsour.2005.07.066
  11. Zhang, L. L.; Lu, T. H.; Bao, J. C.; Tang, Y. W.; Li, C. Electrochem. Commun. 2006, 8, 1625. https://doi.org/10.1016/j.elecom.2006.07.033
  12. Rice, C. A.; Ha, S.; Masel, R. I.; Wieckowski, A. J. Power Sources 2003, 115, 229. https://doi.org/10.1016/S0378-7753(03)00026-0
  13. Markovic, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X.; Villegas, I.; Weaver, M. J. Electrochim. Acta 1995, 40, 91. https://doi.org/10.1016/0013-4686(94)00241-R
  14. Zhu, Y.; Khan, Z.; Masel, R. I. J. Power Sources 2005, 139, 15. https://doi.org/10.1016/j.jpowsour.2004.06.054
  15. Yu, X.; Pickup, P. G. J. Power Sources 2008, 182, 124. https://doi.org/10.1016/j.jpowsour.2008.03.075
  16. Jung, W. S.; Han, J.; Ha, S. J Power Sources 2007, 173, 53. https://doi.org/10.1016/j.jpowsour.2007.08.023
  17. Baik, S. M.; Han, J.; Kim, J.; Kwon, Y. Int J. Hydrogen Energy 2011, 36, 14719. https://doi.org/10.1016/j.ijhydene.2011.04.181
  18. Kim, S.; Han, J.; Kwon, Y.; Lee, K.-S.; Lim, T.-H.; Nam, S. W.; Jang, J. H. Electrochim. Acta 2011, 56, 7984.
  19. Pavese, A.; Solis, V.; Giordano, M. C. J. Electroanal. Chem. 1988, 245, 145. https://doi.org/10.1016/0022-0728(88)80066-4
  20. Gossner, K.; Mizera, E. J. Electroanal. Chem. 1979, 98, 37.
  21. Pavese, A.; Solis, V.; Giordano, M. C. Electrochim. Acta 1987, 32, 1213. https://doi.org/10.1016/0013-4686(87)80037-3
  22. Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 44, 239. https://doi.org/10.1016/S0022-0728(73)80250-5
  23. Rand, D. A. J.; Woods, R. J. Electroanal. Chem. 1972, 35, 209. https://doi.org/10.1016/S0022-0728(72)80308-5
  24. Bolzan, A.; Martins, M. E.; Arvia, A. J. J. Electroanal. Chem. 1983, 157, 339.
  25. Li, G.; Pickup, P. G. Electrochimica Acta 2004, 49, 4119. https://doi.org/10.1016/j.electacta.2004.04.005
  26. Uhm, S.; Chung, S. T.; Lee, J. J. Power Sources 2008, 178, 34. https://doi.org/10.1016/j.jpowsour.2007.12.016
  27. Jung, W. S.; Han, J. H.; Yoon, S. P.; Nam, S. W.; Lim, T.-H.; Hong, S.-A. J. Power Sources 2011, 196, 4573. https://doi.org/10.1016/j.jpowsour.2009.11.085
  28. Bolzan, A.; Martins, M. E.; Arvia, A. J. J. Electroanal. Chem. 1986, 207, 279. https://doi.org/10.1016/0022-0728(86)87077-2

Cited by

  1. A Research on Direct Formic Acid Fuel Cell (DFAFC) using Palladium Catalyst Synthesized by Polyol Method vol.26, pp.3, 2015, https://doi.org/10.7316/KHNES.2015.26.3.227
  2. Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation vol.5, pp.7, 2018, https://doi.org/10.1088/2053-1591/aad0e8