DOI QR코드

DOI QR Code

Self-Organized Synthesis and Mechanism of SnO2@Carbon Tube-Core Nanowire

  • Luo, Minting (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Ma, Yong-Jun (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Pei, Chonghua (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Xing, Yujing (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Wen, Lixia (School of Materials Science and Engineering, Southwest University of Science and Technology) ;
  • Zhang, Li (School of Materials Science and Engineering, Southwest University of Science and Technology)
  • Received : 2012.03.06
  • Accepted : 2012.05.03
  • Published : 2012.08.20

Abstract

$SnO_2@carbon$ tube-core nanowire was synthesized via a facile self-organized method, which was in situ by one step via Chemical Vapor Deposition. The resulting composite was characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The diameter of the single nanowire is between 5 nm and 60 nm, while the length would be several tens to hundreds of micrometers. Then X-ray diffraction pattern shows that the composition is amorphous carbon and tin dioxide. Transmission electron microscope images indicate that the nanowire consists of two parts, the outer carbon tube and the inner tin dioxide core. Meanwhile, the possible growth mechanism of $SnO_2@carbon$ tube-core nanowire is also discussed.

Keywords

References

  1. Cm, L.; Ry, Z.; Ws, L.; Lz, Z.; Sj, H.; Mm, R.; Jx, X. Transactions of Nonferrous Metals Society of China 2007, 17, 934. https://doi.org/10.1016/S1003-6326(07)60203-9
  2. Yu, Z.; Zhu, S.; Li, Y.; Liu, Q.; Feng, C.; Zhang, D. Materials Letters 2011, 65, 3072. https://doi.org/10.1016/j.matlet.2011.06.053
  3. Fu, Y.; Ma, R.; Shu, Y.; Cao, Z.; Ma, X. Materials Letters 2009, 63, 1946. https://doi.org/10.1016/j.matlet.2009.06.017
  4. Yu, X.; Yang, S.; Zhang, B.; Shao, D.; Dong, X.; Fang, Y.; Li, Z.; Wang, H. Journal of Materials Chemistry 2011, 21, 12295. https://doi.org/10.1039/c1jm11364j
  5. Michal, J. W.; Piotr, W.; Michal, B.; Stanislaw, C.; Andrzej, H.; Piotr, J.; Waldemar, K.; Jan, A. K.; Hubert, L.; Marcin, L.; Lewandowska-Szumiel, M. Journal of Alloys and Compounds 2006, 423, 87. https://doi.org/10.1016/j.jallcom.2005.12.028
  6. Zheng, M.; Jagota, A.; Semke, E.; Diner, B.; Mclean, R.; Lustig, S.; Richardson, R.; Tassi, N. Nat. Mater. 2003, 2, 338. https://doi.org/10.1038/nmat857
  7. Silva, J. C. M.; De Souza, R. F. B.; Parreira, L.; Neto, E. T.; Calegaro, M.; Santos, M. Applied Catalysis B: Environmental 2010, 99, 265. https://doi.org/10.1016/j.apcatb.2010.06.031
  8. Chen, Y.; Huang, Q. Z.; Wang, J.; Wang, Q.; Xue, J. Journal of Materials Chemistry 2011, 21, 17448. https://doi.org/10.1039/c1jm13572d
  9. Chen, L.; Zhang, B.; Qu, M.; Yu, Z. Powder Technology 2005, 154, 70. https://doi.org/10.1016/j.powtec.2005.04.028
  10. Zhang, Y.; Liu, X.; Chen, D.; Yu, L.; Nie, J.; Yi, S.; Li, H.; Huang, C. Journal of Alloys and Compounds 2011, 509, L69. https://doi.org/10.1016/j.jallcom.2010.10.154
  11. Xh, L.; Hc, H.; L, L.; Xy, W., Jr., Z. Chinese Journal of Inorganic Chemistry 2011, 27, 781.
  12. An, G.; Na, N.; Zhang, X.; Miao, Z.; Miao, S.; Ding, K.; Liu, Z. Nanotechnology 2007, 18, 435707. https://doi.org/10.1088/0957-4484/18/43/435707
  13. He, Z.; Lee, C.; Maurice, J.; Pribat, D.; Paul, H.; Cojocaru, C. Carbon 2011, 49, 4710. https://doi.org/10.1016/j.carbon.2011.06.075
  14. Kunadian, I.; Andrews, R.; Qian, D.; Pinar Menguc, M. Carbon 2009, 47, 384. https://doi.org/10.1016/j.carbon.2008.10.022
  15. Brockner, W.; Ehrhardt, C.; Gjikaj, M. Thermochimica Acta 2007, 456, 64. https://doi.org/10.1016/j.tca.2007.01.031
  16. Wang, J.; Liu, D.; Yan, X.; Yuan, H.; Ci, L.; Zhou, Z.; Gao, Y.; Song, L.; Liu, L.; Zhou, W.; Wang, G.; Xie, S. Solid State Communications 2004, 130, 89. https://doi.org/10.1016/j.ssc.2004.01.003