DOI QR코드

DOI QR Code

Purification and Structural Characterization of Cold Shock Protein from Listeria monocytogenes

  • Lee, Ju-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jeong, Ki-Woong (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Yang-Mee (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2012.04.05
  • Accepted : 2012.04.30
  • Published : 2012.08.20

Abstract

Cold shock proteins (CSPs) are a family of proteins induced at low temperatures. CSPs bind to single-stranded nucleic acids through the ribonucleoprotein 1 and 2 (RNP 1 and 2) binding motifs. CSPs play an essential role in cold adaptation by regulating transcription and translation via molecular chaperones. The solution nuclear magnetic resonance (NMR) or X-ray crystal structures of several CSPs from various microorganisms have been determined, but structural characteristics of psychrophilic CSPs have not been studied. Therefore, we optimized the purification process to obtain highly pure Lm-Csp and determined the three-dimensional structure model of Lm-Csp by comparative homology modeling using MODELLER on the basis of the solution NMR structure of Bs-CspB. Lm-Csp consists of a ${\beta}$-barrel structure, which includes antiparallel ${\beta}$ strands (G4-N10, F15-I18, V26-H29, A46-D50, and P58-Q64). The template protein, Bs-CspB, shares a similar ${\beta}$ sheet structure and an identical chain fold to Lm-Csp. However, the sheets in Lm-Csp were much shorter than those of Bs-CspB. The Lm-Csp side chains, E2 and R20 form a salt bridge, thus, stabilizing the Lm-Csp structure. To evaluate the contribution of this ionic interaction as well as that of the hydrophobic patch on protein stability, we investigated the secondary structures of wild type and mutant protein (W8, F15, and R20) of Lm-Csp using circular dichroism (CD) spectroscopy. The results showed that solvent-exposed aromatic side chains as well as residues participating in ionic interactions are very important for structural stability. Further studies on the three-dimensional structure and dynamics of Lm-Csp using NMR spectroscopy are required.

Keywords

References

  1. Graumann, P.; Schroder, K.; Schmid, R.; Marahiel, M. A. J. Bacteriol. 1996, 178, 4611-4619.
  2. Phadatare, S.; Alsina, J.; Inouye, M. Current Opinion in Microbiology 1999, 2, 175-180. https://doi.org/10.1016/S1369-5274(99)80031-9
  3. Lopez, M. M.; Makhatadze G. I. Biochem. Biophys. Acta 2000, 1479, 196-202. https://doi.org/10.1016/S0167-4838(00)00048-0
  4. Lopez, M. M.; Yutani, K.; Makhatadze, G. I. J. Biol. Chem. 1999, 274, 33601-33608. https://doi.org/10.1074/jbc.274.47.33601
  5. Lopez, M. M.; Yutani, K.; Makhatadze, G. I. J. Biol. Chem. 2001, 276, 15511-15518. https://doi.org/10.1074/jbc.M010474200
  6. Zeeb, M.; Balbach, J. Prot. Sci. 2003, 12, 112-123. https://doi.org/10.1110/ps.0219703
  7. Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. FEBS Journal 2007, 274, 1265-1279. https://doi.org/10.1111/j.1742-4658.2007.05672.x
  8. Max, K. E. A.; Zeeb, M.; Bienert, R.; Balbach, J.; Heinemann, U. J. Mol. Biol. 2006, 360, 702-714. https://doi.org/10.1016/j.jmb.2006.05.044
  9. Delbruck, H.; Mueller, U.; Perl, D.; Schmid, F. X.; Heinemann, U. J. Mol. Biol. 2001, 313, 359-369. https://doi.org/10.1006/jmbi.2001.5051
  10. Kremer, W.; Schuler, B.; Harrieder, S.; Geyer, M.; Gronwald, W.; Welker, C.; Jaenicke, R.; Kalbitzer, H. R. Eur. J. Biochem. 2001, 268, 2527-2539. https://doi.org/10.1046/j.1432-1327.2001.02127.x
  11. McLauchlin, J. J. Appl. Bacteriol. 1987, 63, 1-11. https://doi.org/10.1111/j.1365-2672.1987.tb02411.x
  12. Farber, J. M.; Peterkin, P. I. Microbiol. Rev. 1991, 55, 476-511.
  13. Moon, C. H.; Jeong, K. W.; Kim, H. J.; Heo, Y. S.; Kim, Y. M. Bull. Korean Chem. Soc. 2009, 30, 2647-2650. https://doi.org/10.5012/bkcs.2009.30.11.2647
  14. Jeong, K. W.; Lee, J. Y.; Kang, D. I.; Lee, J. U.; Hwang, Y. S.; Kim, Y. M. Bull. Korean Chem. Soc. 2008, 29, 1311-1314. https://doi.org/10.5012/bkcs.2008.29.7.1311
  15. Birnboim, H. C.; Doly, J. Nuc. Acids Res. 1979, 7, 1413-1518.
  16. Kim, W. H.; Back, S. H.; Kang, D. I.; Shin, H. C.; Kim, Y. M. Bull. Korean Chem. Soc. 2008, 29, 2259-2263. https://doi.org/10.5012/bkcs.2008.29.11.2259
  17. Wilkins, M. R.; Gasteiger, E.; Bairoch, A.; Sanchez, J. C.; Williams, K. L.; Appel, R. D.; Hochstrasser, D. F. Methods Mol. Biol. 1999, 112, 531.
  18. Marti-Renom, M. A.; Stuart, A.; Fiser, A.; Sanchez, R.; Melo, F.; Sali, A. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 291. https://doi.org/10.1146/annurev.biophys.29.1.291
  19. Lee, J. Y.; Kim, Y. M. Bull. Korean Chem. Soc. 2005, 26, 1695- 1700. https://doi.org/10.5012/bkcs.2005.26.11.1695
  20. Bandziluis, R. J.; Swanson, M. S.; Dreyfuss, G. Genes Dev. 1989, 3, 431-437. https://doi.org/10.1101/gad.3.4.431
  21. Burd, C. G.; Dreyfuss, G. Science 1994, 265, 615-621. https://doi.org/10.1126/science.8036511
  22. Schindler, T.; Graumann, P. L.; Perl, D.; Ma, S.; Schmid, F. X.; Marahiel, M. A. J. Biol. Chem. 1999, 274, 3407-3413. https://doi.org/10.1074/jbc.274.6.3407
  23. Zeeb, M.; Max, K. E. A.; Weininger, U.; Low, C.; Sticht, H.; Balbach, J. Nucleic Acids Research 2006, 34, 4561-4571. https://doi.org/10.1093/nar/gkl376
  24. Schindler, T.; Herrler, M.; Marahiel, M. A.; Schmid, F. X. Nature Struct. Biol. 1995, 2, 663-673. https://doi.org/10.1038/nsb0895-663
  25. Berova, N.; Nakanishi, K.; Woody, R. W. Circular Dichroism; Wiley-VCH: 2000; pp 612-614.
  26. Woody, R. W. Biopolymers 1978, 17, 1451-1467. https://doi.org/10.1002/bip.1978.360170606
  27. Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L. Biochemistry 1993, 32, 5560-5565. https://doi.org/10.1021/bi00072a010
  28. Vuilleumier, S.; Sancho, J.; Loewenthal, R.; Fersht, A. R. Biochemistry 1993, 32, 10303-10313. https://doi.org/10.1021/bi00090a005
  29. Sreerama, N.; Manning, M. C.; Powers, M. E.; Zhang, J. X.; Goldenberg, D. P.; Woody, R. W. Biochemistry 1993, 38, 10814- 10822.
  30. Sreeama, N.; Venyaminov, S. Y.; Woody, R. W. Protein Sci. 1999, 8, 370-380.
  31. Perczel, A.; Park, K.; Fasman, G. D. Proteins: Struct. Funct. Genet. 1992, 13, 57-69. https://doi.org/10.1002/prot.340130106

Cited by

  1. Resistance of Listeria monocytogenes to Stress Conditions Encountered in Food and Food Processing Environments vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02700
  2. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment vol.12, pp.None, 2012, https://doi.org/10.3389/fmicb.2021.710085