DOI QR코드

DOI QR Code

A Novel Electrochemical Method for Sensitive Detection of Melamine in Infant Formula and Milk using Ascorbic Acid as Recognition Element

  • Li, Junhua (Department of Chemistry and Material Science, Hengyang Normal University) ;
  • Kuang, Daizhi (Department of Chemistry and Material Science, Hengyang Normal University) ;
  • Feng, Yonglan (Department of Chemistry and Material Science, Hengyang Normal University) ;
  • Zhang, Fuxing (Department of Chemistry and Material Science, Hengyang Normal University) ;
  • Xu, Zhifeng (Department of Chemistry and Material Science, Hengyang Normal University) ;
  • Liu, Mengqin (Department of Chemistry and Material Science, Hengyang Normal University)
  • Received : 2012.03.23
  • Accepted : 2012.04.26
  • Published : 2012.08.20

Abstract

A novel and convenient electrochemical method has been developed for sensitive determination of melamine (MEL) using ascorbic acid (AA) as the recognition element. The working electrode employed in this method was modified with the nanocomposite of hydroxyapatite/carbon nanotubes to enhance the current signal of recognition element. The interaction between MEL and AA was investigated by fourier transform infrared spectroscopy and cyclic voltammetry, and the experimental results indicated that hydrogen bonding was formed between MEL and AA. Because of the existing hydrogen bonding and electrostatic interaction, the anodic peak current of AA was decreased obviously while the non-electroactive MEL added in. It illustrated that the MEL acted as an inhibitor to the oxidation of AA and the decreasing signals can be used to detect MEL. Under the optimal conditions, the decrease in anodic peak current of AA was proportional to the MEL concentrations ranging from 10 to 350 nM, with a detection limit of 1.5 nM. Finally this newly-proposed method was successfully employed to detect MEL in infant formula and milk, and good recovery was achieved.

Keywords

References

  1. Ding, N.; Yan, N.; Ren, C.; Chen, X. Anal. Chem. 2010, 82, 5897. https://doi.org/10.1021/ac100597s
  2. Liu, F.; Yang, X.; Sun, S. Analyst 2011, 136, 374. https://doi.org/10.1039/c0an00765j
  3. Xie, Y.; Huang, Y.; Wang, W.; Liu, G.; Zhao, R. Analyst 2011, 136, 2482. https://doi.org/10.1039/c1an15119c
  4. Dominguez-Estevez, M.; Constable, A.; Mazzatorta, P.; Renwick, A. G.; Schilter, B. Regul. Toxicol. Pharm. 2010, 57, 247. https://doi.org/10.1016/j.yrtph.2010.03.002
  5. Zhu, L.; Gamez, G.; Chen, H. W.; Chingin, K.; Zenobi, R. Chem. Commun. 2009, 5, 559.
  6. Sun, Q.; Shen, Y.; Sun, N.; Zhang, G. J.; Chen, Z.; Fan, J. F.; Jia, L. Q.; Xiao, H. Z.; Li, X. R.; Puschner, B. Eur. J. Pediatr. 2010, 169, 483. https://doi.org/10.1007/s00431-009-1093-y
  7. Liu, Y.; Deng, J.; An, L.; Liang, J.; Chen, F.; Wang, H. Food Chem. 2011, 126, 745. https://doi.org/10.1016/j.foodchem.2010.11.057
  8. Su, H.; Fan, H.; Ai, S.; Wu, N.; Fan, H.; Bian, P.; Liu, J. Talanta 2011, 85, 1338. https://doi.org/10.1016/j.talanta.2011.06.017
  9. Wu, Z.; Zhao, H.; Xue, Y.; Cao, Q.; Yang, J.; He, Y.; Li, X.; Yuan, Z. Biosens. Bioelectron. 2011, 26, 2574. https://doi.org/10.1016/j.bios.2010.11.007
  10. Roy, B.; Saha, A.; Nandi, A. K. Analyst 2011, 136, 67. https://doi.org/10.1039/c0an00599a
  11. Chi, H.; Liu, B.; Guan, G.; Zhang, Z.; Han, M. Y. Analyst 2010, 135, 1070. https://doi.org/10.1039/c000285b
  12. Liang, X.; Wei, H.; Cui, Z.; Deng, J.; Zhang, Z.; You, X.; Zhang, X. E. Analyst 2011, 136, 179. https://doi.org/10.1039/c0an00432d
  13. Attia, M. S.; Bakir, E.; Abdel-aziz, A. A.; Abdel-mottaleb, M. S. A. Talanta 2011, 84, 27. https://doi.org/10.1016/j.talanta.2010.11.071
  14. Xiang, D.; Zeng, G.; Zhai, K.; Li, L.; He, Z. Analyst 2011, 136, 2837. https://doi.org/10.1039/c1an00013f
  15. Zeng, H. J.; Yang, R.; Wang, Q. W.; Li, J. J.; Qu, L. B. Food Chem. 2011, 127, 842. https://doi.org/10.1016/j.foodchem.2011.01.021
  16. Lou, T.; Wang, Y.; Li, J.; Peng, H.; Xiong, H.; Chen, L. Anal. Bioanal. Chem. 2011, 401, 333. https://doi.org/10.1007/s00216-011-5067-3
  17. Squadrone, S.; Ferro, G. L.; Marchis, D.; Mauro, C.; Palmegiano, P.; Amato, G.; Poma Genin, E.; Abete, M. C. Food Control 2010, 21, 714. https://doi.org/10.1016/j.foodcont.2009.10.013
  18. Sun, H.; Wang, L.; Ai, L.; Liang, S.; Wu, H. Food Control 2010, 21, 686. https://doi.org/10.1016/j.foodcont.2009.10.008
  19. Wu, W. C.; Tsai, I. L.; Sun, S. W.; Kuo, C. H. Food Chem. 2011, 128, 783. https://doi.org/10.1016/j.foodchem.2010.12.134
  20. Bera, R. K.; Raj, C. R. Analyst 2011, 136, 1644. https://doi.org/10.1039/c0an00870b
  21. Liao, C. W.; Chen, Y. R.; Chang, J. L.; Zen, J. M. Electroanalysis 2011, 23, 573.
  22. Liu, Y. T.; Deng, J.; Xiao, X. L.; Ding, L.; Yuan, Y. L.; Li, H.; Li, X. T.; Yan, X. N.; Wang, L. L. Electrochim. Acta 2011, 56, 4595. https://doi.org/10.1016/j.electacta.2011.02.088
  23. Jin, G. P.; Yu, B.; Yang, S. Z.; Ma, H. H. Microchim. Acta 2011, 174, 265. https://doi.org/10.1007/s00604-011-0618-z
  24. Liang, R.; Zhang, R.; Qin, W. Sens. Actuators B 2009, 141, 544. https://doi.org/10.1016/j.snb.2009.05.024
  25. Zhu, H.; Zhang, S.; Li, M.; Shao, Y.; Zhu, Z. Chem. Commun. 2010, 46, 2259. https://doi.org/10.1039/b924355k
  26. Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M. Microchim. Acta 2011, 172, 379. https://doi.org/10.1007/s00604-010-0512-0
  27. Wang, H.; Zhai, L.; Li, Y.; Shi, T. Mater. Res. Bull 2008, 43, 1607. https://doi.org/10.1016/j.materresbull.2007.06.034
  28. Li, L.; Li, B.; Cheng, D.; Mao, L. Food Chem. 2010, 122, 895. https://doi.org/10.1016/j.foodchem.2010.03.032
  29. Li, F.; Li, J.; Feng, Y.; Yang, L.; Du, Z. Sens. Actuators B 2011, 157, 110. https://doi.org/10.1016/j.snb.2011.03.033
  30. Mbouguen, J. C. K.; Kenfack, I. T.; Walcarius, A.; Ngameni, E. Talanta 2011, 85, 754. https://doi.org/10.1016/j.talanta.2011.04.064
  31. Kumar, S. A.; Lo, P. H.; Chen, S. M. Biosens. Bioelectron. 2008, 24, 518. https://doi.org/10.1016/j.bios.2008.05.007
  32. Laviron, E. J. Electroanal. Chem. 1974, 52, 355. https://doi.org/10.1016/S0022-0728(74)80448-1
  33. Zheng, X.; Zhou, D.; Xiang, D.; Huang, W.; Lu, S. Russ. J. Electrochem. 2009, 45, 1183.
  34. Bond, A. M. Modern Polarographic Methods in Analytical Chemistry; Marcel Dekker: New York, 1980; pp 236-287.
  35. Li, G.; Yang, S.; Qu, L.; Yang, R.; Li, J. J. Solid State Electrochem. 2011, 15, 161. https://doi.org/10.1007/s10008-010-1088-7
  36. Motahary, M.; Ghoreishi, S. M.; Behpour, M.; Golestaneh, M. J. Appl. Electrochem. 2010, 40, 841. https://doi.org/10.1007/s10800-009-0067-0
  37. Anson, F. Anal. Chem. 1964, 36, 932. https://doi.org/10.1021/ac60210a068
  38. Adams, R. N. Electrochemistry at Solid Electrodes; Marcel Dekker: New York, 1969; pp 280-283.
  39. Cao, Q.; Zhao, H.; Zeng, L.; Wang, J.; Wang, R.; Qiu, X.; He, Y. Talanta 2009, 80, 484. https://doi.org/10.1016/j.talanta.2009.07.006
  40. Choi, J. H.; Kim, Y. T.; Lee, J. H. Analyst 2010, 135, 2445. https://doi.org/10.1039/c0an00396d
  41. Guo, Z.; Gai, P.; Hao, T.; Wang, S.; Wei, D.; Gan, N. Talanta 2011, 83, 1736.
  42. Cao, Q.; Zhao, H.; He, Y.; Ding, N.; Wang, J. Anal. Chim. Acta 2010, 675, 24. https://doi.org/10.1016/j.aca.2010.07.002

Cited by

  1. Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide vol.182, pp.11-12, 2015, https://doi.org/10.1007/s00604-015-1533-5
  2. Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose vol.65, pp.28, 2017, https://doi.org/10.1021/acs.jafc.7b00834
  3. Review on Nanomaterial-Based Melamine Detection vol.7, pp.1, 2019, https://doi.org/10.3390/chemosensors7010009
  4. Electrochemical Detection of Melamine vol.26, pp.7, 2012, https://doi.org/10.1002/elan.201400166
  5. Electrochemical Detection of Melamine by Using Reduced Graphene Oxide-Copper Nanoflowers Modified Glassy Carbon Electrode vol.4, pp.23, 2019, https://doi.org/10.1021/acsomega.9b02827