References
- Ding, N.; Yan, N.; Ren, C.; Chen, X. Anal. Chem. 2010, 82, 5897. https://doi.org/10.1021/ac100597s
- Liu, F.; Yang, X.; Sun, S. Analyst 2011, 136, 374. https://doi.org/10.1039/c0an00765j
- Xie, Y.; Huang, Y.; Wang, W.; Liu, G.; Zhao, R. Analyst 2011, 136, 2482. https://doi.org/10.1039/c1an15119c
- Dominguez-Estevez, M.; Constable, A.; Mazzatorta, P.; Renwick, A. G.; Schilter, B. Regul. Toxicol. Pharm. 2010, 57, 247. https://doi.org/10.1016/j.yrtph.2010.03.002
- Zhu, L.; Gamez, G.; Chen, H. W.; Chingin, K.; Zenobi, R. Chem. Commun. 2009, 5, 559.
- Sun, Q.; Shen, Y.; Sun, N.; Zhang, G. J.; Chen, Z.; Fan, J. F.; Jia, L. Q.; Xiao, H. Z.; Li, X. R.; Puschner, B. Eur. J. Pediatr. 2010, 169, 483. https://doi.org/10.1007/s00431-009-1093-y
- Liu, Y.; Deng, J.; An, L.; Liang, J.; Chen, F.; Wang, H. Food Chem. 2011, 126, 745. https://doi.org/10.1016/j.foodchem.2010.11.057
- Su, H.; Fan, H.; Ai, S.; Wu, N.; Fan, H.; Bian, P.; Liu, J. Talanta 2011, 85, 1338. https://doi.org/10.1016/j.talanta.2011.06.017
- Wu, Z.; Zhao, H.; Xue, Y.; Cao, Q.; Yang, J.; He, Y.; Li, X.; Yuan, Z. Biosens. Bioelectron. 2011, 26, 2574. https://doi.org/10.1016/j.bios.2010.11.007
- Roy, B.; Saha, A.; Nandi, A. K. Analyst 2011, 136, 67. https://doi.org/10.1039/c0an00599a
- Chi, H.; Liu, B.; Guan, G.; Zhang, Z.; Han, M. Y. Analyst 2010, 135, 1070. https://doi.org/10.1039/c000285b
- Liang, X.; Wei, H.; Cui, Z.; Deng, J.; Zhang, Z.; You, X.; Zhang, X. E. Analyst 2011, 136, 179. https://doi.org/10.1039/c0an00432d
- Attia, M. S.; Bakir, E.; Abdel-aziz, A. A.; Abdel-mottaleb, M. S. A. Talanta 2011, 84, 27. https://doi.org/10.1016/j.talanta.2010.11.071
- Xiang, D.; Zeng, G.; Zhai, K.; Li, L.; He, Z. Analyst 2011, 136, 2837. https://doi.org/10.1039/c1an00013f
- Zeng, H. J.; Yang, R.; Wang, Q. W.; Li, J. J.; Qu, L. B. Food Chem. 2011, 127, 842. https://doi.org/10.1016/j.foodchem.2011.01.021
- Lou, T.; Wang, Y.; Li, J.; Peng, H.; Xiong, H.; Chen, L. Anal. Bioanal. Chem. 2011, 401, 333. https://doi.org/10.1007/s00216-011-5067-3
- Squadrone, S.; Ferro, G. L.; Marchis, D.; Mauro, C.; Palmegiano, P.; Amato, G.; Poma Genin, E.; Abete, M. C. Food Control 2010, 21, 714. https://doi.org/10.1016/j.foodcont.2009.10.013
- Sun, H.; Wang, L.; Ai, L.; Liang, S.; Wu, H. Food Control 2010, 21, 686. https://doi.org/10.1016/j.foodcont.2009.10.008
- Wu, W. C.; Tsai, I. L.; Sun, S. W.; Kuo, C. H. Food Chem. 2011, 128, 783. https://doi.org/10.1016/j.foodchem.2010.12.134
- Bera, R. K.; Raj, C. R. Analyst 2011, 136, 1644. https://doi.org/10.1039/c0an00870b
- Liao, C. W.; Chen, Y. R.; Chang, J. L.; Zen, J. M. Electroanalysis 2011, 23, 573.
- Liu, Y. T.; Deng, J.; Xiao, X. L.; Ding, L.; Yuan, Y. L.; Li, H.; Li, X. T.; Yan, X. N.; Wang, L. L. Electrochim. Acta 2011, 56, 4595. https://doi.org/10.1016/j.electacta.2011.02.088
- Jin, G. P.; Yu, B.; Yang, S. Z.; Ma, H. H. Microchim. Acta 2011, 174, 265. https://doi.org/10.1007/s00604-011-0618-z
- Liang, R.; Zhang, R.; Qin, W. Sens. Actuators B 2009, 141, 544. https://doi.org/10.1016/j.snb.2009.05.024
- Zhu, H.; Zhang, S.; Li, M.; Shao, Y.; Zhu, Z. Chem. Commun. 2010, 46, 2259. https://doi.org/10.1039/b924355k
- Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M. Microchim. Acta 2011, 172, 379. https://doi.org/10.1007/s00604-010-0512-0
- Wang, H.; Zhai, L.; Li, Y.; Shi, T. Mater. Res. Bull 2008, 43, 1607. https://doi.org/10.1016/j.materresbull.2007.06.034
- Li, L.; Li, B.; Cheng, D.; Mao, L. Food Chem. 2010, 122, 895. https://doi.org/10.1016/j.foodchem.2010.03.032
- Li, F.; Li, J.; Feng, Y.; Yang, L.; Du, Z. Sens. Actuators B 2011, 157, 110. https://doi.org/10.1016/j.snb.2011.03.033
- Mbouguen, J. C. K.; Kenfack, I. T.; Walcarius, A.; Ngameni, E. Talanta 2011, 85, 754. https://doi.org/10.1016/j.talanta.2011.04.064
- Kumar, S. A.; Lo, P. H.; Chen, S. M. Biosens. Bioelectron. 2008, 24, 518. https://doi.org/10.1016/j.bios.2008.05.007
- Laviron, E. J. Electroanal. Chem. 1974, 52, 355. https://doi.org/10.1016/S0022-0728(74)80448-1
- Zheng, X.; Zhou, D.; Xiang, D.; Huang, W.; Lu, S. Russ. J. Electrochem. 2009, 45, 1183.
- Bond, A. M. Modern Polarographic Methods in Analytical Chemistry; Marcel Dekker: New York, 1980; pp 236-287.
- Li, G.; Yang, S.; Qu, L.; Yang, R.; Li, J. J. Solid State Electrochem. 2011, 15, 161. https://doi.org/10.1007/s10008-010-1088-7
- Motahary, M.; Ghoreishi, S. M.; Behpour, M.; Golestaneh, M. J. Appl. Electrochem. 2010, 40, 841. https://doi.org/10.1007/s10800-009-0067-0
- Anson, F. Anal. Chem. 1964, 36, 932. https://doi.org/10.1021/ac60210a068
- Adams, R. N. Electrochemistry at Solid Electrodes; Marcel Dekker: New York, 1969; pp 280-283.
- Cao, Q.; Zhao, H.; Zeng, L.; Wang, J.; Wang, R.; Qiu, X.; He, Y. Talanta 2009, 80, 484. https://doi.org/10.1016/j.talanta.2009.07.006
- Choi, J. H.; Kim, Y. T.; Lee, J. H. Analyst 2010, 135, 2445. https://doi.org/10.1039/c0an00396d
- Guo, Z.; Gai, P.; Hao, T.; Wang, S.; Wei, D.; Gan, N. Talanta 2011, 83, 1736.
- Cao, Q.; Zhao, H.; He, Y.; Ding, N.; Wang, J. Anal. Chim. Acta 2010, 675, 24. https://doi.org/10.1016/j.aca.2010.07.002
Cited by
- Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide vol.182, pp.11-12, 2015, https://doi.org/10.1007/s00604-015-1533-5
- Effects of Wet-Blending on Detection of Melamine in Spray-Dried Lactose vol.65, pp.28, 2017, https://doi.org/10.1021/acs.jafc.7b00834
- Review on Nanomaterial-Based Melamine Detection vol.7, pp.1, 2019, https://doi.org/10.3390/chemosensors7010009
- Electrochemical Detection of Melamine vol.26, pp.7, 2012, https://doi.org/10.1002/elan.201400166
- Electrochemical Detection of Melamine by Using Reduced Graphene Oxide-Copper Nanoflowers Modified Glassy Carbon Electrode vol.4, pp.23, 2019, https://doi.org/10.1021/acsomega.9b02827