DOI QR코드

DOI QR Code

SNCR Application to Diesel Engine DeNOx under Combustion-driven Flow Reactor Conditions

  • Nam, Chang-Mo (Division of Health and Science, Yeungnam College of Science and Technology) ;
  • Gibbs, Bernard M. (Environmental and Materials Engineering, University of Leeds)
  • Received : 2012.04.20
  • Accepted : 2012.06.21
  • Published : 2012.07.31

Abstract

Diesel DeNOx experiments using the SNCR process were performed by directly injecting NH3 into a simulated engine cylinder (966 $cm^3$) for which a diesel fuelled combustion-driven flow reactor was designed by simulating diesel engine geometry, temperature profiles, aerodynamics and combustion products. A wide range of air/fuel mixtures (A/F=20~45) were combusted for oxidizing diesel flue gas conditions where an initial NOx levels were 250~900 ppm and molar ratios (${\beta}=NH_3/NOx$) ranged from 0.5~2.0 for NOx reduction tests. Effective NOx reduction occurred over a temperature range of 1100~1350 K at cylinder injections where about 34% NOx reduction was achieved with ${\beta}$=1.5 and cylinder cooling at optimum flow conditions. The effects of simulated engine cylinder and exhaust parts, initial NOx levels, molar ratios and engine speeds on NOx reduction potential are discussed following temperature gradients and diesel engine environments. A staged injection by $NH_3$ and diesel fuel additive is tested for further NOx reduction, and more discussed for practical implication.

Keywords

References

  1. Amiridis, M. D., Zhang, T., Farrauto, R. J., 1996, Review on selective catalytic reduction of NO by hydrocarbons, Appl. Catal., B, 10, 203-2011. https://doi.org/10.1016/0926-3373(96)00031-8
  2. Arand, J. K., Palos, R., Muzio, L. J., Sotter, J. G., 1980, Urea reduction of NOx in combustion effluents, U.S., Patent No., 4,208,386.
  3. Capener, L., 2008, Advanced overfire air/SNCR and sorbent injection system, Power Eng., 112, 192-198.
  4. Caton, J. A., Narney, J. K., Cariappa, C., Laster, W. R., 1995, The selective non-catalytic reduction of NO using $NH_3$ at up to 15% $O_2$, Cana. J. Chem. Eng., 73, 345-350. https://doi.org/10.1002/cjce.5450730311
  5. De Nevers, N., 2000, Air pollution control engineering, textbook, 2nd ed., McGraw-Hill, Singapore, 13-35.
  6. Duo, W., Dam-Johansen, K., Ostergaard, K., 1990, Widening the temperature range of the Thermal DeNOx process; an experimental investigation, Proceedings of the Combustion Institute, 23, 297-303.
  7. Francke, K. P., Miessner, H., Rudolph, R., 2000, Plasmacatalytic processes for environmental problems, Catal. Today, 59, 411-416. https://doi.org/10.1016/S0920-5861(00)00306-0
  8. Glarborg, P., Dam-Johansen, K., Miller, J. A., Kee, R. J., Coltrin, M. E., 1994, Modeling the Thermal DeNOx process in flow reactors, Int. J. Chem. Kinet., 26, 421-4213. https://doi.org/10.1002/kin.550260405
  9. Heywood, J. B., 1988, Internal combustion engine fundamentals. McGraw-Hill Book Co., 157-600.
  10. Kasuya, F., Glarborg, P., Johnson, J. E., Dam-Johansen, K., 1995, The Thermal DeNOx process: Influence of partial pressures and temperature, Chem. Eng. Sci., 50, 9, 1455-1466. https://doi.org/10.1016/0009-2509(95)00008-S
  11. Kjaergaard, K., Glarborg, P., Dam-Johansen, K., Miller, J. A., 1996, Pressure effects on the Thermal DeNOx process, Proceedings of the Combustion Institute, 26, 2067-2075.
  12. Lyon, R. K., 1975, Method for the reduction of the concentration of NO in combustion effluents using ammonia, U.S., Patent No. 3,900,554.
  13. Lyon, R. K., 1987, Thermal DeNOx controlling nitrogen oxides emissions by a noncatalytic process, Env. Sci. Tech., 21, 3, 231-236. https://doi.org/10.1021/es00157a002
  14. Masuda, K., Tsujimura, K., Shinoda, K., Kato, T., 1996, Silver-promoted catalyst for removal of NO from emission of diesel engines, Appl. Catal., B, 8, 33-40. https://doi.org/10.1016/0926-3373(95)00051-8
  15. Miller, J. A., Bowman, C. T., 1989, Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy Combust. Sci., 15, 287-338. https://doi.org/10.1016/0360-1285(89)90017-8
  16. Miyamoto, N., Ogawa, H., Wang, J., Shudo, T., Yamazaki, K., 1995, Diesel NOx reduction with ammonium deoxidizing agents directly injected into the cylinder, Int. J. Vehi. Desi., 16, 1, 71-79.
  17. Nakatsuji, T., Yamaguchi, T., Sato, N., Ohno, H., 2008, A selective NOx reduction on Rh-based catalysts in lean conditions using CO as a main reductant, Appl. Catal., B, 85, 61-70. https://doi.org/10.1016/j.apcatb.2008.06.024
  18. Nam, C. M., Gibbs, B. M., 2002, Application of the Thermal DeNOx process to diesel engine DeNOx: an experimental and kinetic modeling study, FUEL, 81, 1359-1367. https://doi.org/10.1016/S0016-2361(02)00025-X
  19. Niu, S., Han, K., Lu, C., 2010, Experimental study on the effect of urea and additive injection for controlling NOx emissions, Env. Eng. Sci., 27, 47-53. https://doi.org/10.1089/ees.2008.0181
  20. Ostberg, M., Dam-Johansen, K., 1994, Empirical modeling of the SNCR of NO: comparison with large-scale experiments and detailed kinetic modeling, Chem. Eng. Sci., 49, 12, 1897-1904. https://doi.org/10.1016/0009-2509(94)80074-X
  21. Quang Dao, D., Gasnot, L., Marschallek, K., Bakali, A., Pauwels, J. F., 2010, Experimental study of NO removal by gas reburning and selective noncatalytic reduction using ammonia in a lab-scale reactor, Ener. Fuels, 24, 1696-1703 https://doi.org/10.1021/ef901236e
  22. Srivastava, R. K., Hall, R. E., Khan, S., Culligan, K., Lani, B. W., 2005, NOx emission control options for coal-fired electric utility boilers, J. Air Waste Manage. Assoc., 55, 1367-1388. https://doi.org/10.1080/10473289.2005.10464736
  23. Tayyeb Javed, M., Nimmo, W., Mahmood, A., Irfan, N., 2009, Effect of oxygenated liquid additives on the urea based SNCR process, J. Env. Manage., 90, 3429-3435. https://doi.org/10.1016/j.jenvman.2009.05.021
  24. Weijuan, Y., Zhijun, Z., Junhu, Z., Hongkun, L., Jianzhong, L., Kefa, C., 2009, Application of hybrid coal reburning/SNCR processes for NOx reduction in a coal-fired boiler, Env. Eng. Sci., 26, 311-318. https://doi.org/10.1089/ees.2007.0310
  25. Xu, B., Tian, H., Yang, J., Sun, D., Cai, S., 2011, A system of selective non catalytic reduction of NOx for diesel engine, Advan. Mater. Res., Vols. 201-203, 643-646. https://doi.org/10.4028/www.scientific.net/AMR.201-203.643
  26. Yang, S., Wang, C., Li, J., Ma, L., Chang, H., 2011, Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study, Appl. Catal., B, 110, 71-80. https://doi.org/10.1016/j.apcatb.2011.08.027