Abstract
This paper describes the algorithm recognizing car type from the image received from UAV and the recognition results between three types of car images. Using the NCC(Normalized Cross-Correlation) algorithm, geometric information is matched from template images. Template images are obtained from UAV and satellite map and indoor experiment is performed using satellite map. After verification of the possibility, experiment for verification of same car type recognition is performed using small UAV. In the experiment, same type cars are matched with 0.6 point similarity and truck with similar color distribution is not matched with template image of a sedan.
본 논문은 무인 항공기에서 지상의 차량을 촬영하여 차종을 인식하기 위한 알고리즘의 개발에 대해 논하고 있다. NCC(Normalized Cross-Correlation) 방법을 이용하여 영상에서 목표물의 기하학적인 정보를 정합하도록 하였고, 실제 비행영상을 통해 획득한 템플릿 이미지와 위성 지도를 통해 획득한 템플릿 이미지를 이용하여 영상의 정합을 수행하였다. 실내 기반 실험을 통해 정합 가능성을 평가하였으며, 위성 지도를 이용한 모의실험을 통해 NCC 알고리즘을 이용하여 차량의 종류를 식별할 수 있음을 확인하였다. 마지막으로 실제 비행 실험을 통해 획득한 영상을 통해 동일한 차량을 전체 영상에서 정합하는 실험을 수행하였다. 비행 실험 결과 승용차의 위치가 정확하게 탐지되었으며, 정합 결과 0.6점이상의 유사도가 나타남을 확인할 수 있었다. 또한 유사한 색상을 지닌 트럭은 정합하지 않음으로서 이종 차량의 구분이 가능함을 확인하였다.