DOI QR코드

DOI QR Code

품종이 다른 오디(Morus alba L.)의 성인병 관련 효소 억제효과

Inhibitory Effects of Various Mulberry Fruits (Morus alba L.) on Related Enzymes to Adult Disease

  • 채정우 (경기도산림환경연구소) ;
  • 박혜진 (경북대학교 응용생명과학부) ;
  • 강선애 (경북대학교 응용생명과학부) ;
  • 차원섭 (경북대학교 식품공학부/식품생물산업연구소) ;
  • 안동현 (부경대학교 식품공학과/식품연구소) ;
  • 조영제 (경북대학교 식품공학부/식품생물산업연구소)
  • Chae, Jung-Woo (Gyeonggi-do Forest Environment Research Institute) ;
  • Park, Hye-Jin (School of Applied Bioscience, Kyungpook National University) ;
  • Kang, Sun-Ae (School of Applied Bioscience, Kyungpook National University) ;
  • Cha, Won-Seup (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology, Institute of Food Science, Pukyong National University) ;
  • Cho, Young-Je (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University)
  • 투고 : 2012.03.23
  • 심사 : 2012.07.23
  • 발행 : 2012.07.30

초록

생리활성을 갖는 새로운 기능성 물질을 개발할 목적으로 9종의 오디(Morus alba L.)를 이용하여 물과 60% 에탄올 추출물을 제조하고 이들의 angiotensin converting enzyme 활성억제효과, xanthine oxidase 활성억제효과, ${\alpha}$-amylase 활성억제효과 및 ${\alpha}$-glucosidase 활성억제효과를 탐색하여 본 결과, 페놀함량이 청일뽕과 강원3호 품종의 오디에서 물추출물에서 청일뽕과 강원3호 두품종이, 에탄올 추출물에서 대엽조생, 청일뽕, 강원3호, 희학 및 카타네오 등 5 품종이 2 mg/g 이상의 phenolic compound 함량을 나타내었으며, angiotensin converting enzyme 활성억제효과는 물 추출물에서 백운3호가 $90.9{\pm}4.5%$, 에탄올 추출물에서는 희학 품종이 $81.8{\pm}4.5%$의 활성억제효과를 나타내었다. 또한 xanthine oxidase 활성억제효과는 물 추출물에서 국상20호가 약 10% 정도, 에탄올 추출물에서는 카타네오가 $21.4{\pm}2.3%$의 활성억제효과를 나타내었다. 당분해활성에 관여하는 ${\alpha}$-amylase와 ${\alpha}$-glucosidase 활성억제효과를 측정해 본 결과 물추출물에서만 대엽조생, 수원뽕, 청일뽕, 강원3호, 희학 및 국상20호 등 6품종이 100%의 ${\alpha}$-amylase 저해효과가 관찰되었으며, 백운3호, 대엽조생, 청일뽕 및 희학은 물추출물에서, 대축면, 강원3호 및 국상20호는 에탄올 추출물에서 20% 이상의 ${\alpha}$-glucosidase 저해효과가 확인되었다. 이상의 결과, 높은 생리활성기능을 나타내는 여러 종의 오디의 물과 에탄올 추출물들은 항고혈압 및 항당뇨 효과가 있는 기능성 식품소재로 활용할 수 있을 것으로 판단되었다.

The objective of this research was to develop the functional material of water and 60% ethanol extracts from nine kinds of mulberry fruits (Morus alba L.) that influence the inhibitory activity on angiotensin-converting enzyme, xanthine oxidase, ${\alpha}$-amylase, and ${\alpha}$-glucosidase. The total phenolic contents in the water extracts were over 2 mg/g in two species (Cheongilppong and Kangwon III) and five species (Daeyoupchosaeng, Cheongilppong, Kangwon III, Hihak, and Cataneo) of 60% ethanol extracts. The inhibitory activity against the angiotensin-converting enzyme was determined with them. Baekwoon III was $90.9{\pm}4.5%$ in the water extracts, and Hihak was $81.8{\pm}4.5%$ in the 60% ethanol extracts. The inhibitory activity of Kuksang 20 against xanthin oxidase was about 10% in the water extracts, and Cataneo was $21.4{\pm}2.3%$ in the 60% ethanol extracts. Six of the species (Daeyoupchosaeng, Suwonppong, Cheongilppong, Kangwon III, Hihak, and Kuksang 20) in the water extracts showed inhibitory activities against ${\alpha}$-amylase, as 100%, respectively. The inhibitory activity of ${\alpha}$-glucosidase was determined for these nine species. Four species (Baekwoon III, Daeyoupchosaeng, Cheongilppong, Kangwon III, Hihak, and Kuksang 20) in the water extracts and three species (Daechoukmyeun, Kangwon III, and Kuksang 20) in the 60% ethanol extracts showed inhibition of over 20%. The results revealed strong biological activity in spite of little total phenolic contents. These water and 60% ethanol extracts with high-quality biological activity from various mulberry fruits (Morus alba L.) are expected to represent good candidates for the development of antihypertentive and antidiabetes sources.

키워드

참고문헌

  1. An, B. J. and Lee, J. T. 1999. Isolation and characterization of angiotensin converting enzyme inhibitors from Camellia sinensis L. and their chemical structure determination. Food Sci. Biotechnol. 8, 285-289.
  2. Cha, J. Y., Kim, H. J., Chung, C. H. and Cho, Y. S. 1999. Antioxidative activites and contens of polyphenolic compound of Cudrania tricuspodata. J. Kor. Soc. Food Sci. Nutr. 28, 1310- 1314.
  3. Cho, Y. J., Ju, I. S., Chun, S. S., An, B. J., Kim, J. H., Kim, M. U. and Kwon, O. J. 2008. Screening of biological activities of extracts from Rhododendron mucronulatum Turcz. flowers. J. Kor. Soc. Food Sci. Nutr. 37, 276-281. https://doi.org/10.3746/jkfn.2008.37.3.276
  4. Cho, Y. J., Ju, I. S., Kim, B. C., Lee, W. S., Kim, M. J., Lee, B. G., An, B. J., Kim, J. H. and Kwon, O. J. 2007. Biological activity of Omija extracts. J. Kor Soc. Appl. Chem. 50, 198-203.
  5. Cushman, D. W. and Ondetti, M. A. 1980. Inhibitors of angiotensin converting enzyme for treatment of hypertension. Biochem. Pharmacol. 29, 1871-1877. https://doi.org/10.1016/0006-2952(80)90096-9
  6. Duke, E. J., Joyce, P. and Ryan, J. P. 1973. Characterization of alternative molecular forms of xanhine oxidase in the mouse. J. Biochem. 131, 187-193.
  7. Duval, B. and Shetty, K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed Anise (Pimpinella anisum L.) root extract. J. Food Biochem. 25, 361-377. https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  8. Engel, S. L., Schaeffer, T. R., Gold, B. I. and Rubin, B. 1972. Inhibition of pressure effects of angiotensin I and augmentation of depressor effects of breadykinin by synthetic peptides. Proc. Soc. Exp. Biol. Med. 140, 240-245. https://doi.org/10.3181/00379727-140-36433
  9. Feng, G. H., Richardson, M., Chen, M. S., Kramer, K. J., Morgan, T. D. and Reek, G. R. 1996. Amylase inhibitors from wheat: Amino acid sequences and patterns of inhibition of insect and human ${\alpha}$-amylases. Insect Biochem. Mol. Biol. 26, 419-426. https://doi.org/10.1016/0965-1748(95)00087-9
  10. Fridovich, I. 1986. Biological effects of the superoxide radical. Arch. Biochem. Biophys. 247, 1-15. https://doi.org/10.1016/0003-9861(86)90526-6
  11. Funayama, S. and Hikono, H. 1979. Hypoemsive principles of Diospyors kaki Leaves. Chem. Pharm. Bull. 27, 2865-2871. https://doi.org/10.1248/cpb.27.2865
  12. Hayashi, T., Sawa, K. and Morita, N. 1988. Inhibition of cow's milk xanthine oxidase by flavonoids. J. Natural Prod. 51, 345-351. https://doi.org/10.1021/np50056a030
  13. Kameda, K., Takaku, T., Okyada, H. and Kimura, H. 1987. Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J. Natural Prod. 50, 680-687. https://doi.org/10.1021/np50052a017
  14. Kim, H. B., Kim, S. Y., Ryu, K. S., Lee, W. C. and Moon, J. Y. 2001. Effect of methanol extract from mulberry fruit on the lipid metabolism and liver function in cholesterol induced hyperlipidemia rats. Kor. J. Seric. Sci. 43, 104-107.
  15. Kim, H. B., Lee, Y. W., Lee, W. J. and Moon, J. Y. 2001. Physiological effects and sensory characteristics of Mulberry fruit wine with chongilppong. Kor. J. Seric. Sci. 43, 16-20.
  16. Kim, J. H., Kim, M. U. and Cho, Y. J. 2007. Isolation and identification of inhibitory compound from Crataegi fructus on $\alpha$-amylase and $\alpha$-glucosidase. J. Kor. Soc. Appl. Biol. Chem. 50, 204-209.
  17. Kim, K. M., Suh, H. J., Chung, S. H., Cho, W. D. and Ma, S. J. 1999. Chemical structure of angiotensin converting enzyme inhibitor isolated from onion flesh. Food Sci. Biotechnol. 8, 329-332.
  18. Kim, S. K. 1991. Benefical medicine, mulberry fruit. In Bonchohak. Younglimsa, Seoul, Korea. pp. 598-605.
  19. Kim, S. Y., Park, K. Y. and Lee, W. C. 1998. Antiinflammatory and antioxidative effects of Morus spp. fruit extract. Kor. J. Med. Crop Sci. 6, 204-209.
  20. Kim, T. Y. and Kwon, Y. B. 1996. A study on the antidiabetic effect of mulberry fruits. Kor. J. Seri. Sci. 38, 100-104.
  21. Lee, S. E., Bang, J., Song, J., Seong, N. S., Park, H. W., Chung, H. G. and An, T. J. 2004. Inhibitory activity on angiotensin converting enzyme (ACE) of korean medicinal herbs. Kor. J. Medcinial Crop Sci. 12, 73-78.
  22. Lee, W. C., Kim, A. J. and Kim, S. Y. 2003. The study on the functional materials and effects of mulberry leaf. Food Sci. Indust. 36, 2-14.
  23. Lee, W. Y., Ahn, J. K., Park, Y. K. and Rhee, H. I. 2004. Inhibitory effects of proanthocynidin extracted from distylium racemosum of $\alpha$-amylase and ${\alpha}$-glucosidase activities. Kor. J. Pharmacogn. 35, 271-275.
  24. Markwick, N. P., Laing, W. A., Cristeller, J. T., Reid, S. J. and Netwton, M. R. 1996. ${\alpha}$-Amylase activities in larval midgut extraxcts from four species of Lepidoptera (Tortricidae and Gelechiidae): Response to pH and to inhibitors from wheat, barley, kidney bean, and streptomyces. J. Econ. Entomol. 89, 39-45. https://doi.org/10.1093/jee/89.1.39
  25. Maruyama, S., Nakagomi, K., Tomizuka, N. and Suzuki, H. 1985. Angiotensin converting enzyme inhibitor derived from an enzymatic hydrolysate of casein. Agric. Biol. Chem. 49, 1405-1410. https://doi.org/10.1271/bbb1961.49.1405
  26. Moon, S. J. and Hong, S. M. 1996. A study on the relation between psychological stress and stress hormone, nutritional status of patients with non-insulin dependent diabetes mellitus. Kor. J. Nutr. 29, 889-898.
  27. Noh, H. and Song, K. B. 2001. Isolation of an angiotensin converting enzyme inhibitor from Oenanthe javanica. Agric. Chem. Biotechnol. 44, 98-99.
  28. Park, S. W., Chung, Y. S., Yun, Y. S., Cha, B. S., Song, Y. D., Lee, H. C. and Huh, K. B. 1998. Insulin resistance and relate factors in the healthy young men. Diabetes 22, 504-512.
  29. Ra, K. S., Bae, S. H., Son, H. S., Chung, S. H. and Suh, H. S. 1998. Inhibition of xanthine oxidase by flavonoids from onion skin. J. Kor. Soc. Food Sci. Nutr. 27, 693-697.
  30. Robert, I. L. 1994. In Functional Foods Phytochemicals and antioxidants. Goldberg, I. (Ed.) Chapman & Hall, New York pp.393.
  31. Sato, M., Ramarathnam, N., Suzuki, Y., Ohkubo, T., Takeuchi, M. and Ochi, H. 1996. Varietal differences in the phenolic content and superoxide radical scavenging potential of wines from different sources. J. Agric. Food Chem. 44, 37-41. https://doi.org/10.1021/jf950190a
  32. Stirpe, F. and Corte, E. D. 1969. The regluation of rat liver xanthine oxidase. J. Biol. Chem. 244, 3855-3863.
  33. Tibbot, B. K. and Skadsen, R. W. 1996. Molecular cioning and characeriwation of a gibberellin-inducible, putative ${\alpha}$-glucosidase gene from berley. Plant Mol. Biol. 30, 229-241. https://doi.org/10.1007/BF00020110
  34. Ziegler, D. W., Hutchison, H. D. and Kissing, R. E. 1971. Induction of xanthine oxidase by virus infections in newborn mice. Infect. Immun. 3, 237-242.
  35. Zielinski, H. and Kozlowska, H. 2000. Antioxidant activity and total phenolics in selseted cereal grains and their different morphological fractions. J. Agric. Food Chem. 48, 2008-2010. https://doi.org/10.1021/jf990619o

피인용 문헌

  1. Recovery Effect of Flavonoids from Morus alba Fruits on Alloxan-induced Pancreatic Islet in Zebrafish (Dinio rerio) vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.009
  2. Antioxidant and Xanthine Oxidase Inhibitory Activities of Hot Water Extracts of Medicinal Herbs vol.42, pp.10, 2013, https://doi.org/10.3746/jkfn.2013.42.10.1712
  3. Enzyme Inhibition Activities of Ethanol Extracts from Germinating Rough Rice (Oryza sativar L.) vol.42, pp.6, 2013, https://doi.org/10.3746/jkfn.2013.42.6.917
  4. Quality Characteristics of Mulberry Cultivated under Greenhouse and Open Field Conditions vol.43, pp.12, 2014, https://doi.org/10.3746/jkfn.2014.43.12.1964