DOI QR코드

DOI QR Code

Effects of Different Physical Frequency on Food-Dependent Exercise Induced Allergy Anaphylaxis (FDEIA) and Related Mechanisms

운동빈도의 차이가 식이유도 운동알레르기 질환과 관련기전에 미치는 영향

  • Kim, Cheol-Woo (Department of Police & Security Administration, Dong-eui Institute Technology) ;
  • Kwak, Yi-Sub (Department of Physical Education, Dong-eui University)
  • 김철우 (동의과학대학교 경찰행정계열) ;
  • 곽이섭 (동의대학교 체육학과)
  • Received : 2012.02.24
  • Accepted : 2012.06.29
  • Published : 2012.07.30

Abstract

Food allergies have become a serious health concern in the past two decades, especially in developed countries. Foods associated with allergies include vegetables, some fruits, shellfish, wheat, egg, chicken, and nuts. To describe the specific fundamentals, etiological factors, and clinical manifestations, we analyzed the different physical frequency on spleen index in sensitized and regular exercise-trained mice. We also conducted a proliferation assay of lymphocytes to OVA, ROS, ASAS, and we determined the cytokine levels. Female BALB/c mice were bred in the animal laboratory of the P and D university under controlled conditions ($22{\pm}2^{\circ}C$, RH 45-55%, and a 12-hour photoperiod). The animals were 6 weeks old at the start of the study and were fed a standard commercial chow diet from 09:00 to 15:00 for the 8-week study period. All animals had access to distilled deionized water ad libitum. They were divided into four groups: a control group (S; control sensitized, n=25), a low-frequency training group (F2, n=25), a mid-frequency training group (F3, n=25), and a high-frequency training group (F5, n=25) following the treatment of exercise time per week. The results were as follows: The mice spleen index showed the highest grade in the F5 group compared with the other groups; this level showed in an exercise frequency-dependent manner. In the proliferation assay of OVA, the F5 group showed the highest grade compared with the other groups; this level was also showed in an exercise frequency-dependent manner. Peritoneal ROS and ASAS showed a statistically significant increase in the F5 group and decreased in the F2 group compared with the S group. However, there were no significant differences in the F3 group. The highest level of IL-4 was found in the F5 group compared with the other groups. However, the highest level of INF-${\gamma}$ was in the F2 group. The results suggest that FDEIA is positively correlated with the frequency of exercise due to the direct effect of physical exercise on peritoneal ROS and the cytokine profile. Further research is needed on the specific mechanism underlying the combined effects of exercise intensity and frequency on physical-induced allergy anaphylaxis.

본 연구에서는 적절하게 알레르기가 유발되는 운동강도인 50분간의 강도를 선정한 후 운동빈도를 서로 달리하여 통제 그룹(S) 저빈도 그룹(F2, 주2회), 중빈도 그룹(F3, 주 3회) 및 고빈도 그룹(F5, 주5회)으로 나누어 훈련을 부여하고 OVA알부민으로 감작한 후 OVA로 challenge를 하였을 때, 알레르기 아나플락시스의 변화 양상 차이를 살펴보고 동시에 기전변화를 함께 규명하고자 하였다. 본 연구를 위해 그룹당 25마리씩 통제군(S; control sensitized, n=25), 저빈도 훈련군(F2, n=25), 중빈도 훈련군(F3, n=25) 및 고빈도 훈련군(F5, n=25)으로 구분하여 수영훈련 빈도에 따른 알레르기를 유도하였을 때, 알레르기 아나플락시스를 조사하고 아울러 비장지수, 림프구의 수, 복강 ROS, ASAS, 및 싸이토카인(INF-${\gamma}$, IL-4)의 변화를 함께 측정하였다. 이 때, 알러지 아나플락시스 테스트는 그룹당 10마리를 사용하였고, 나머지는 세포분석과 ROS 측정을 위하여 사용하였다. 본 연구결과 일반 감작군에 비하여 운동 감작군에서 알러지가 더 잘 유도됨을 알 수 있었고, 같은 운동강도 부여시 저빈도의 운동군에 비하여 고빈도 운동군에서 알러지 반응이 더 잘 일어남을 확인 할 수 있었다. 이는 고빈도 운동군에서 현저히 증가되는 IL-4 반응과 ASAS 반응으로 알 수 있었고, 특히 이러한 반응이 고빈도 운동그룹에서 현저히 증가하는 ROS 반응과 일치함을 확인하였다. 한편 저빈도 그룹에서는 오히려 INF-${\gamma}$의 증가와 ROS 반응이 감소하였고, ASAS 반응이 통제군보다 오히려 줄어들어 운동의 빈도가 알레르기반응과 밀접한 연관이 있음을 확인할 수 있었다. 추후 이러한 원인에 대한 면밀한 분석이 요구되며, 알레르기 반응의 cross training 및 detraining 효과도 함께 규명 되어야 할 것으로 여겨진다.

Keywords

References

  1. Aihara, Y. 2007. Food-dependent exercise-induced anaphylaxis. Arerugi. 56, 451-456.
  2. Barg, W., Medrala, W. and Wolanczyk-Medrala, A. 2011. Exercise-induced Anaphylaxis: An Update on Diagnosis and Treatment. Curr. Allergy Asthma. Rep. 11, 45-51. https://doi.org/10.1007/s11882-010-0150-y
  3. Beaudouin, E., Renaudin, J. M., Morisset, M., Codreanu, F., Kanny, G. and Moneret-Vautrin, D. A. 2006. Food-dependent exercise-induced anaphylaxis-update and current data. Eur. Ann. Allergy Clin. Immunol. 38, 45-51.
  4. Chandra, R. K., Baker, M., Whang, S. and Au, B. 1991. Effect of two feeding formulas on immune responses and mortality in mice challenged with Listeria monocytogenes. Immunol. Lett. 27, 45-48. https://doi.org/10.1016/0165-2478(91)90242-3
  5. Gotua, M., Lomidze, N., Dolidze, N. and Gotua, T. 2008. IgE-mediated food hypersensitivity disorders. Georgian. Med. News 157, 39-44.
  6. Greaves, M. W. 2005. Antihistamines in dermatology. Skin Pharmacol. Physiol. 18, 220-229. https://doi.org/10.1159/000086667
  7. Kim, C. H. and Kwak, Y. S. 2004. Swim training increases ovalbumin induced active systemic anaphylaxis in mice. Immunol. Invest. 33, 469-480. https://doi.org/10.1081/IMM-200039190
  8. Kwak, Y. S. 2010. Studies of exercise-induced allergy anaphylaxis mechanisms and the effects of Vitamin C and catalase Supplementation in Exercise-Induced Allergy Anaphylaxis. J. Life Sci. 20, 511-518. https://doi.org/10.5352/JLS.2010.20.4.511
  9. Lee, W. J., Kwak, Y. S. and Yoo, B. I. 2011. Effects of different exercise intensity on FDEIA and related mechanisms. J. Life. Sci. 4, 542-548.
  10. Lemon-Mule, H., Nowak-Wegrzyn, A., Berin, C. and Knight, A. K. 2008. Pathophysiology of food-induced anaphylaxis. Curr. Allergy Asthma Rep. 8, 201-208. https://doi.org/10.1007/s11882-008-0034-6
  11. Perez Pimiento, A. J., Fernandez, P. B., Santaolalla, M. M., De Paz Arranz, S. and Dominguez, Lazaro A. R. 2001. Exercise-induced anaphylaxis syndrome. An. Med. Interna. 18, 269-273.
  12. Plavec, D. and Vuljanko, I. M. 2010. Exercise-induced anaphylaxis-a review. Lijec. Vjesn. 132, 173-176.
  13. Radlinska, A., Barg, W., Wolanczyk-Medrala, A. and Medrala, W. 2011. Food-dependenet exercise-induced anaphylaxis-current concepts in pathogensis, diagnostics and treatment. Pol. Merkur. Lekarski. 30, 49-51.
  14. Scomparin, D. X., Grassiolli, S. Marcel, A. C. Gravena, C. Andreazzi, A. E. and Mathias, P. C. 2006. Swim training applied at early age is critical to adrenal medulla catecholamine content and to attenuate monosodium L-glutamate-obesity onset in mice. Life Sci. 79, 2151-2156. https://doi.org/10.1016/j.lfs.2006.07.012
  15. Shankar, D. S. K., Ramnane, M. and Rajouria, E. A. 2010. Etiological approach to chronic urticaria. Indian J. Dermatol. 55, 33-38. https://doi.org/10.4103/0019-5154.60348
  16. Silpa-archa, N., Kulthanan, K. and Pinkaew, S. 2011. Physical urticaria: prevalence, type and natural course in a tropical country. J. Eur. Acad. Dermatol. Venereol. 25, 1194-1199. https://doi.org/10.1111/j.1468-3083.2010.03951.x
  17. Teo, S. L., Gerez, I. F. A., Ang, E. Y. and Shek, L. P. 2009. Food-dependent exercise-induced anaphylaxis-A review of 5 cases. Ann. Acad. Med. Singapore 38, 905-909.
  18. Urisu, A., Ebisawa, M., Mukoyama, T., Morikawa, A. and Kondo, N. 2011. Japanese guideline for food allergy. Allergol. Int. 60, 221-236. https://doi.org/10.2332/allergolint.11-RAI-0329
  19. Volcheck, G. W. and Li, J. T. 1997. Exercise-induced urticaria and anaphylaxis. Mayo. Clin. Proc. 72, 140-147. https://doi.org/10.4065/72.2.140
  20. Woo, M. Y., Cwinn, A. A., Dickinson, G. and Yang, W. H. 2001. Food-dependent exercise-induced anaphylaxis. CJEM. 3, 315-317.