DOI QR코드

DOI QR Code

Effects of Current Density and Organic Additives on via Copper Electroplating for 3D Packaging

3D패키지용 Via 구리충전 시 전류밀도와 유기첨가제의 영향

  • Choi, Eun-Hey (Department of Information & Communication Engineering, Hanbat National University) ;
  • Lee, Youn-Seoung (Department of Information & Communication Engineering, Hanbat National University) ;
  • Rha, Sa-Kyun (Department of Materials Engineering, Hanbat National University)
  • 최은혜 (한밭대학교 정보통신공학과) ;
  • 이연승 (한밭대학교 정보통신공학과) ;
  • 나사균 (한밭대학교 재료공학과)
  • Received : 2012.06.18
  • Accepted : 2012.07.03
  • Published : 2012.07.27

Abstract

In an effort to overcome the problems which arise when fabricating high-aspect-ratio TSV(through silicon via), we performed experiments involving the void-free Cu filling of a TSV(10~20 ${\mu}m$ in diameter with an aspect ratio of 5~7) by controlling the plating DC current density and the additive SPS concentration. Initially, the copper deposit growth mode in and around the trench and the TSV was estimated by the change in the plating DC current density. According to the variation of the plating current density, the deposition rate during Cu electroplating differed at the top and the bottom of the trench. Specifically, at a current density 2.5 mA/$cm^2$, the deposition rate in the corner of the trench was lower than that at the top and on the bottom sides. From this result, we confirmed that a plating current density 2.5 mA/$cm^2$ is very useful for void-free Cu filling of a TSV. In order to reduce the plating time, we attempted TSV Cu filling by controlling the accelerator SPS concentration at a plating current density of 2.5 mA/$cm^2$. A TSV with a diameter 10 ${\mu}m$ and an aspect ratio of 7 was filled completely with Cu plating material in 90 min at a current density 2.5 mA/$cm^2$ with an addition of SPS at 50 mg/L. Finally, we found that TSV can be filled rapidly with plated Cu without voids by controlling the SPS concentration at the optimized plating current density.

Keywords

References

  1. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi and D. P. Barkey, J. Electrochem. Soc., 152(11), H173 (2005). https://doi.org/10.1149/1.2041047
  2. Y. Yang, R. Labie, F. Ling, C. Zhao, A. Radisic , J. Van Olmen, Y. Travaly, B. Verlinden and I. De Wolf, Microelectron. Reliab., 50, 1636 (2010). https://doi.org/10.1016/j.microrel.2010.07.019
  3. M. Tan and J. N. Harb, J. Electrochem. Soc., 150(6), C420 (2003). https://doi.org/10.1149/1.1570412
  4. Z. Wang, O. Yaegashi, H. Sakaue, T. Takahagi and S. Shingubara, J. Electrochem. Soc., 151(12), C781 (2004). https://doi.org/10.1149/1.1810453
  5. A. Radisic, O. Lühn, H. G. G. Philipsen, Z. El-Mekki, M. Honore, S. Rodet, S. Armini, C. Drijbooms, H. Bender and W. Ruythooren, Microelectronic Eng., 88, 701 (2011). https://doi.org/10.1016/j.mee.2010.06.030
  6. E. Delbos, L. Omnès, A. Etcheberry, Microelectronic Eng., 87, 514 (2010). https://doi.org/10.1016/j.mee.2009.06.008
  7. Y. Song, J. -H. Seo, Y. -S. Lee, S. -K. Rha, Kor. J. Mater, Res., 19(6), 334 (2009) (in Korean).
  8. T. -G. Woo, I. -S. Park, H. -W. Lee and K. -W. Seol, Kor. J. Mater, Res., 16(11), 710 (2006) (in Korean). https://doi.org/10.3740/MRSK.2006.16.11.710
  9. W. Wang, Y. -B. Li and Y. -L. Li, Appl. Surf. Sci., 255, 4389 (2009). https://doi.org/10.1016/j.apsusc.2008.11.057
  10. W. -P. Dow, C. -C. Li, Y. -C. Su, S. -P. Shen, C. -C. Huang, C. Lee, B. Hsu and S. Hsu, Electrochim. Acta, 54, 5894 (2009). https://doi.org/10.1016/j.electacta.2009.05.053
  11. J. W. Gallaway, M. J. Willey and A. C. West, J. Electrochem. Soc., 156(8), D287(2009). https://doi.org/10.1149/1.3142422
  12. S. S. Noh, E. H. Choi, Y. H. Lee, H. J. Ju, S. K. Rha, B. J. Lee, D. K. Kim and Y. S. Lee, in Proceedings of the 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits(Incheon, Korea, July, 2011) p. 305.
  13. G. -H. Chang and J. -H. Lee, J. Microelectron. Packag. Soc., 13(4), 45 (2006).

Cited by

  1. Cu filling of TSV using various current forms for three‐dimensional packaging application vol.25, pp.4, 2013, https://doi.org/10.1108/SSMT-04-2013-0011
  2. Various Cu Filling Methods of TSV for Three Dimensional Packaging vol.31, pp.3, 2013, https://doi.org/10.5781/KWJS.2013.31.3.11
  3. Fabrication and Optimization of High Aspect Ratio Through-Silicon-Vias Electroplating for 3D Inductor vol.9, pp.10, 2018, https://doi.org/10.3390/mi9100528
  4. Electrochemical Factors of Levelers on Plating Uniformity of Through-Holes: Simulation and Experiments vol.165, pp.9, 2018, https://doi.org/10.1149/2.0331809jes