DOI QR코드

DOI QR Code

Synthesis and Photocatalytic Properties of SnO2-Mixed and Sn-Doped TiO2 Nanoparticles

  • Choi, Hong-Goo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Yong, Seok-Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2012.06.11
  • Accepted : 2012.06.28
  • Published : 2012.07.27

Abstract

$SnO_2$-mixed and Sn-doped $TiO_2$ nanoparticles were synthesized via a hydrothermal process. $SnO_2$-mixed $TiO_2$ nanoparticles prepared in a neutral condition consisted of anatase $TiO_2$ nanoparticles(diamond shape, ~25 nm) and cassiterite $SnO_2$ nanoparticles(spherical shape, ~10 nm). On the other hand, Sn-doped $TiO_2$ nanoparticles obtained under a high acidic condition showed a crystalline phase corresponding to rutile $TiO_2$. As the Sn content increased, the particle shape changed from rod-like(d~40 nm, 1~200 nm) to spherical(18 nm) with a decrease in the particle size. The peak shift in the XRD results and a change of the c-axis lattice parameter with the Sn content demonstrate that the $TiO_2$ in the rutile phase was doped with Sn. The photocatalytic activity of the $SnO_2$-mixed $TiO_2$ nanoparticles dramatically increased and then decreased when the $SnO_2$ content exceeded 4%. The increased photocatalytic activity is mainly attributed to the improved charge separation of the $TiO_2$ nanoparticles with the $SnO_2$. In the case of Sn-doped $TiO_2$ nanoparticles, the photocatalytic activity increased slightly with the Sn content due most likely to the larger energy bandgap caused by Sn-doping and the decrease in the particle size. The $SnO_2$-mixed $TiO_2$ nanoparticles generally exhibited higher photocatalytic activity than the Sn-doped $TiO_2$ nanoparticles. This was caused by the phase difference of $TiO_2$.

Keywords

References

  1. I. Gur, Science, 310(5754), 1618 (2005). https://doi.org/10.1126/science.310.5754.1618
  2. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin and M. Gratzel, Thin Solid Films, 516(14), 4613 (2008). https://doi.org/10.1016/j.tsf.2007.05.090
  3. D. K. Kim, P. Muralidharan, H. W. Lee, R. Ruffo, Y. Yang, C. K. Chan, H. Peng, R. A. Huggins and Y. Cui, Nano Letters, 8(11), 3948 (2008). https://doi.org/10.1021/nl8024328
  4. H. W. Lee, P. Muralidharan, R. Ruffo, C. M. Mari, Y. Cui and D. K. Kim, Nano Letters, 10(10), 3852 (2010). https://doi.org/10.1021/nl101047f
  5. S. H. Jo, P. Muralidharan and D. K. Kim, Electrochem. Comm., 11(11), 2085 (2009). https://doi.org/10.1016/j.elecom.2009.08.054
  6. S. J. Lee, D. S. Kim, P. Muralidharan, S. H. Jo and D. K. Kim, J. Power Sourc., 196(6), 3095 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.110
  7. K. Zhang, Z. D. Meng and W. C. Oh, Kor. J. Mater. Res., 20(3), 117 (2010). https://doi.org/10.3740/MRSK.2010.20.3.117
  8. C. H. Cho, M. H. Han, D. H. Kim and D. K. Kim, Mater. Chem. Phys., 92(1), 104 (2005). https://doi.org/10.1016/j.matchemphys.2004.12.036
  9. C. H. Cho, D. K. Kim and D. H. Kim, J. Am. Ceram. Soc., 86(7), 1138 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03437.x
  10. J. S. Lee, K. H. You and C. B. Park, Adv. Mater., 24(8), 1084 (2012). https://doi.org/10.1002/adma.201104110
  11. S. H. Cho and S. W. Lee, Kor. J. Mater. Res., 21(2), 83 (2011) (in Korean). https://doi.org/10.3740/MRSK.2011.21.2.83
  12. J. S. Im, S. K. Lee and Y. S. Lee, Appl. Surf. Sci., 257(6), 2164 (2011). https://doi.org/10.1016/j.apsusc.2010.09.066
  13. E. D. Spoerke, M. T. Lloyd, E. M. McCready, D. C. Olson, Y. J. Lee and J. W. P. Hsu, Appl. Phys. Lett., 95, 213506 (2009). https://doi.org/10.1063/1.3232231
  14. A. J. Nozik, Appl. Phys. Lett., 30(11), 567 (1977). https://doi.org/10.1063/1.89262
  15. K. R. Gopidas, M. Bohorquez and P. V. Kamat, J. Phys. Chem., 94(16), 6435 (1990). https://doi.org/10.1021/j100379a051
  16. S. Hotchandani and P. V. Kamat, J. Phys. Chem., 96(16), 6834 (1992). https://doi.org/10.1021/j100195a056
  17. P. V. Kamat and B. Patrick, J. Phys. Chem., 96(16), 6829 (1992). https://doi.org/10.1021/j100195a055
  18. J. Rabani, J. Phys. Chem., 93(22), 7707 (1989). https://doi.org/10.1021/j100359a035
  19. L. Spanhel, H. Weller and A. Henglein, J. Am. Chem. Soc., 109(22), 6632 (1987). https://doi.org/10.1021/ja00256a012
  20. J. Li, D. Wang, H. Liu and Z. Zhu, Mater. Manuf. Process., 27(6), 631 (2012). https://doi.org/10.1080/10426914.2011.593248
  21. N. I. Al-Salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills and M. J. Ryan, J. Mater. Chem., 10(10), 2358 (2000). https://doi.org/10.1039/b004384m
  22. A. R. Denton and N. W. Ashcroft, Phys. Rev., 43(6), 3161 (1991). https://doi.org/10.1103/PhysRevA.43.3161
  23. H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater., 7(4), 663 (1995). https://doi.org/10.1021/cm00052a010
  24. R. Su, R. Bechstein, L. So, R. T. Vang, M. Sillassen, B. Esbjornsson, A. Palmqvist and F. Besenbacher, J. Phys. Chem. C, 115(49), 24287 (2011). https://doi.org/10.1021/jp2086768

Cited by

  1. Comparative study of carbon dioxide sensing by Sn-doped TiO2 nanoparticles synthesized by microwave-assisted and solid-state diffusion route vol.5, pp.4, 2015, https://doi.org/10.1007/s13204-014-0333-2
  2. Effect of thickness on the physical properties and gas sensing application: anatase titanium dioxide nanofilms by automated nebulizer spray pyrolysis (ANSP) vol.28, pp.15, 2017, https://doi.org/10.1007/s10854-017-6943-1
  3. Synthesis of TiO2:Ce nanoparticles for development of ammonia gas sensors vol.29, pp.12, 2018, https://doi.org/10.1007/s10854-018-9034-z