DOI QR코드

DOI QR Code

Development of Glucose Biosensor Using Sol-Gel Reaction of Tetraethoxysilane

Tetraethoxysilane의 졸-겔 반응을 이용한 전기화학적 glucose biosenor 개발

  • Chang, Seong-Cheol (Institute of BioPhysio Sensor Technology, Pusan National University) ;
  • Park, Deog-Su (Institute of BioPhysio Sensor Technology, Pusan National University)
  • 장승철 (부산대학교 바이오피지오센서연구소) ;
  • 박덕수 (부산대학교 바이오피지오센서연구소)
  • Received : 2012.06.25
  • Accepted : 2012.07.14
  • Published : 2012.07.31

Abstract

Disposable amperometric screen-printed biosensor strips have been fabricated by a sol-gel encapsulation for the analysis of glucose. The glucose oxidase(GOx) is entrapped in the gel matrix through sol-gel transition of tetraethoxysliane(TEOS). The biosensor is fabricated by GOx containing thin film of TEOS gel on the surface of screen-printed carbon electrode(SPCE). The GOx-containing thin film of TEOS gel offers a one-step modification process on the surface of SPCE. The optimum conditions for glucose determination have been characterized with respect to the applied potential, enzyme loading ratio, and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 16.0 mM and 0.25 mM, respectively.

Keywords

References

  1. R. Gupta and N. K. Chaudhury, "Entrapment of biomolecules in sol-gel matrix for applications in biosensors: Problems and future prospects", Biosens. Bioelectron., vol. 22, pp. 2387-2399, 2007. https://doi.org/10.1016/j.bios.2006.12.025
  2. W.H. Scouten, J.H.T. Luong, and R.S. Brown, "Enzyme or protein immobilization techniques for applications in biosensor design", Trends in Biotechnology, vol. 13, no. 5, pp. 178-185, 1995. https://doi.org/10.1016/S0167-7799(00)88935-0
  3. D.C. Kim and D.J. Kang, "Molecular recognition and specific interactions for biosensing applications", Sensors, vol. 8, pp. 6605-6641, 2008. https://doi.org/10.3390/s8106605
  4. A. Sassolas, L.J. Blum, and B.D. Leca-Bouvier, "Immobilization strategies to develop enzymatic biosensors", Biotechnol. Adv., vol. 30, no. 3, pp. 489-511, 2012. https://doi.org/10.1016/j.biotechadv.2011.09.003
  5. D.M. Disley, D.C. Cullen, H.X. You, and C.R.Lowe, "Covalent coupling of immunoglobulin G to self-assembled monolayers as a method for immobilizing the interfacial-recognition layer of a surface plasmon resonance immunosensor", Biosens. Bioelectron., vol. 13, pp. 1213-1225, 1998. https://doi.org/10.1016/S0956-5663(98)00059-1
  6. U. Bora, L. Chug and P. Nahar, "Covalent immobilization of proteins onto photoactivated polystyrene microtiter plates for enzyme-linked immunosorbent assay procedures", J. Immunol. Methods, vol. 268, pp. 171-177, 2002. https://doi.org/10.1016/S0022-1759(02)00212-0
  7. A. De Crombrugghe, S. Yunus, and P. Bertrand, "Grafting and characterization of protein on polyaniline surface for biosensor applications," Surf. Interface Anal., vol. 40, no. 3, pp. 404-407, 2008. https://doi.org/10.1002/sia.2792
  8. P.C. Nien, P.Y. Chen, and K.C. Ho, "Fabricating an amperometric cholesterol biosensor by a covalent linkage between poly(3-thiopheneacetic acid) and cholesterol oxidase", Sensors, vol. 9, no. 3, pp. 1794-1806, 2009. https://doi.org/10.3390/s90301794
  9. L.S. Wong, F. Khan, and J. Micklefield, "Selective covalent protein immobilization: strategies and applications", Chem. Rev., vol. 109, pp. 4025-4053, 2009. https://doi.org/10.1021/cr8004668
  10. I. Gill and A. Ballesteros, "Bioencapsulation within synthetic polymers (Part 1) : sol-gel encapsulated biological", Trends in Biotechnology, vol. 18, no.7, pp. 282-296, 2000. https://doi.org/10.1016/S0167-7799(00)01457-8
  11. R. Gupta and A. Kumar, "Bioactive materials for biomedical applications using sol-gel technology", Biomed. Mater., vol. 3 pp. 034005, 2008. https://doi.org/10.1088/1748-6041/3/3/034005
  12. A. Walcarius and M.M. Collinson, "Analytical chemistry with silica sol-gels : Traditional routes to new materials for chemical analysis", Annu. Rev. Anal. Chem., vol. 2, pp. 121-143, 2009. https://doi.org/10.1146/annurev-anchem-060908-155139
  13. M. Rowena, N. Monton, E.M. Forsberg, and J.D. Brennan, "Tailoring sol-gel-derived silica materials for optical biosensing", Chem. Mater., vol. 24, pp. 796-811, 2012. https://doi.org/10.1021/cm202798e
  14. C.J. Brinker and G.W. Scherer, Sol-gel science : The physics and chemistry of sol-gel processing, Academic Press, New York, 1990.
  15. L.C. Klein, Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics and Specialty Shapes, Noyes Publications, Park Ridge, NY, 1988.
  16. L.L. Hench and J.K. West, "The sol-gel process", Chem. Rev., vol. 90, pp. 33-72, 1990. https://doi.org/10.1021/cr00099a003
  17. L.M. Ellerby, C.R Nishida, F. Nishida, S.A. Yamanaka, B. Dunn, J.S. Valentine, and J.I. Zink, "Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method", Science, vol. 255, no. 5048, pp. 1113-1115, 1992. https://doi.org/10.1126/science.1312257
  18. B. C. Dave, B. Dune, J. S. Valentine, and J. I. Zink, "Sol-gel encapsulation1 methods for biosensors", Anal. Chem., vol. 66, no. 22, pp. 1120A-1127A.
  19. A.M. Macmillan, D. Panek, C.D. McGuinness, J.C. Pickup, D. Graham, W.E. Smith, D.J.S. Birch, and J. Karolin, "Improved biocompatibility of protein encapsulation in sol-gel materials", J. Sol-Gel Sci. Technol., vol. 49, pp. 380-384, 2009. https://doi.org/10.1007/s10971-008-1883-0
  20. Y. Gao, A. Heinemann, R. Knott, and J. Bartlett, "Encapsulation of protein in silica matrices : structural evolution on the molecular and nanoscales", Langmuir, vol. 26, no. 2, pp. 1239-1246, 2010. https://doi.org/10.1021/la9023986
  21. J. Wang, P.V.A. Pamidi, and D.S. Park, "Screen-printable sol-gel enzyme-containing carbon inks", Anal. Chem., vol. 68, no. 15, pp. 2705-2708, 1996. https://doi.org/10.1021/ac960159n
  22. H.R Luckarift1, J.C. Spain1, R,R. Naik, and M.O. Stone, "Enzyme immobilization in a biomimetic silica support", Nature Biotechnology, vol. 22, no 2, pp. 211-213, 2004. https://doi.org/10.1038/nbt931
  23. W. Li, R. Yuan, Y. Chai, L. Zhou, S. Chen, and N. Li, "Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor", J. Biochem. Biophys. Methods, vol. 70, pp. 830-837, 2008. https://doi.org/10.1016/j.jprot.2007.11.010
  24. K.S. Kato, M. Kato, and T. Toyooka, "On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis", Anal. Chem., vol. 74, no. 13, pp. 2943-2949. 2002. https://doi.org/10.1021/ac0200421
  25. J.C. Vazquez-Lira, E. Camacho-Frias, A. Pena-Alvarez, and L.E. Vera-Avila, "Preparation and characterization of a sol-gel immunosorbent doped with 2,4-D antibodies", Chem. Mater., vol. 15, pp. 154-161, 2003. https://doi.org/10.1021/cm020715w
  26. J. Wang and P.V.A. Pamidi, "Sol-gel-derived thickfilm amperometric immunosensors", Anal. Chem., vol. 70, no. 6, pp. 1171-1175, 1998. https://doi.org/10.1021/ac971093e
  27. S. Satoh, B. Fugetsu, M. Nomizu, and N. Nishi, "Functional DNA-silica composite prepared by sol-gel method", Polymer Journal, vol. 37, no. 2, pp. 94-101, 2005. https://doi.org/10.1295/polymj.37.94
  28. K. Saal, T. Tatte, I. Tulp, I. Kink, A. Kurg, and U. Maeorg, A. Rinken, and A. Lohmus, "Sol-gel films for DNA microarray applications", Materials Letters, vol. 60, pp. 1833-1838, 2006. https://doi.org/10.1016/j.matlet.2005.12.035
  29. J. Wang, "Sol-gel materials for electrochemical biosensors", Analytica Chimica Acta, vol. 399, pp. 21-27, 1999. https://doi.org/10.1016/S0003-2670(99)00572-3
  30. B. Bucur, D. Fournier, A. Danet, and J.L. Marty, "Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection", Analytica Chimica Acta, vol. 562, no. 1, pp. 115-121, 2006. https://doi.org/10.1016/j.aca.2005.12.060
  31. A. Chaubey, K.K. Pande, and B.D. Malhotra, "Application of polyaniline/sol-gel derived tetraethylorthosilicate films to an amperometric lactate biosensor", Anal. Sci., vol. 19, no. 11, pp. 1477-1480, 2003. https://doi.org/10.2116/analsci.19.1477
  32. M.R.N. Monton, E.M. Forsberg, and J.D. Brennan, "Tailoring sol-gel-derived silica materials for optical biosensing", Chem. Mater., vol. 24, pp. 796-811, 2012. https://doi.org/10.1021/cm202798e
  33. T. Keeling-Tucker and J.D. Brennan, "Fluorescent probes as reporters on the local structure and dynamics in sol-gel-derived nanocomposite materials", Chem. Mater., vol. 13, pp. 3331-3350, 2001. https://doi.org/10.1021/cm010119m
  34. C.M.A. Brett, "Electrochemical sensors for environmental monitoring. Strategy and examples", Pure Appl. Chem. vol. 73, no.12, pp. 1969-1977, 2001. https://doi.org/10.1351/pac200173121969
  35. X. Zhang, H. Ju, and J. Wang, Electrochemical Sensors, Biosensors and Their Biomedical Applications, Academic Press, 2008.
  36. J. Zak and T. Kuwana, "Chemically modified electrodes and electrocatalysis", J. Electroanal. Chem., vol. 50, pp. 645-664, 1983.
  37. S. Cosnier, "Biosensors based on electropolymerized films : newtrends", Anal. Bioanal. Chem., vol. 377, pp. 507-520, 2003 https://doi.org/10.1007/s00216-003-2131-7
  38. G. Van den Berghe, "Insulin therapy in the intensive care unit should be targeted to maintain blood glucose between 4.4 mmol/l and 6.1 mmol/l", Diabetologia, vol. 51, pp. 911-915, 2008. https://doi.org/10.1007/s00125-007-0878-7

Cited by

  1. Fabrication of Polyimide Film Electrode by Laser Ablation and Application for Electrochemical Glucose Biosensor vol.22, pp.5, 2013, https://doi.org/10.5369/JSST.2013.22.5.357