DOI QR코드

DOI QR Code

The Synthesis and Characterization of Mesoporous Microbead Incorporated with CdSe/ZnS QDs

양자점이 고밀도화된 마이크로 비드의 제조 및 특성

  • Lee, Ji-Hye (Bio-IT convergence center, Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Hyun, Sang-Il (Bio-IT convergence center, Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Lee, Jong-Huen (Department of Materials Science and Engineering, Korea University) ;
  • Koo, Eun-Hae (Bio-IT convergence center, Future Convergence Ceramic Division, Korea Institute of Ceramic Engineering and Technology(KICET))
  • 이지혜 (한국세라믹기술원 미래융합세라믹본부 바이오IT융합센터) ;
  • 현상일 (한국세라믹기술원 미래융합세라믹본부 바이오IT융합센터) ;
  • 이종흔 (고려대학교 신소재공학과) ;
  • 구은회 (한국세라믹기술원 미래융합세라믹본부 바이오IT융합센터)
  • Received : 2012.07.05
  • Accepted : 2012.07.24
  • Published : 2012.08.01

Abstract

The spherical mesoporous silica is synthesized and incorporated with CdSe/ZnS quantum dots(QDs) for preparing micro beads to detect toxic and bio-materials with high sensitivity. The spherical silica beads with the brunauer-emmett-telle(BET) average pore size of 15 nm were prepared with a ratio 1, 3, 5-trimethylbenzen, as a swelling agent, to the block-copolymer template surfactant of over 1 and under vigorous mixing condition. The surface of spherical mesoporous silica is modified using octadecylsilane for incorporating QDs. Based on photoluminescence(PL) spectra, the relative brightness of mesoporous silica beads incorporated with 10 nM of QDs is 79,000 times brighter than that of Rodamine 6 G.

Keywords

References

  1. X. S. Xie, J. Yu, and W. Y. Yang, Science, 312, 228 (2006). https://doi.org/10.1126/science.1127566
  2. J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, Science, 311, 1600 (2006). https://doi.org/10.1126/science.1119623
  3. B. Ehdaie, Int. J. Biol. Sci., 3, 108 (2007).
  4. B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, Science, 312, 217 (2006). https://doi.org/10.1126/science.1124618
  5. X. Zhao, R. Tapec-Dytioco, and W. Tan, J. Am. Chem. Soc., 125, 11474 (2003). https://doi.org/10.1021/ja0358854
  6. K. E. Sapsford, T. pons, I. L. Medintz, and H. Mattoussi, Sensors, 6, 925 (2006). https://doi.org/10.3390/s6080925
  7. J. M. Costa-Fernández, R. Pereiro, and A. S. Sanz-Medel, Trends Anal. Chem., 25, 207 (2006). https://doi.org/10.1016/j.trac.2005.07.008
  8. L. Wang, K. Wang, S. Santra, L. R. Hilliard, J. E. Smith, Y. Wu, and W. Tan, Anal. Chem., 78, 647 (2006).
  9. J. Yang, S. R. Dave, and X. Gao, J. Am. Chem. Soc., 130, 5286 (2008). https://doi.org/10.1021/ja710934v
  10. C. Petitto, A. Galarneau, M. F. Driole, B. Chiche, B. Alonso, F. Di Renzo, and F. Fajula, Chem. Mater., 17, 2120 (2005). https://doi.org/10.1021/cm050068j
  11. J. S. Lettow, Y. J. Han, P. Schmidt-Winkel, P. Yang, D. Zhao, G. D. Stucky, and J. Y. Ying, Langmuir, 16, 8291 (2000). https://doi.org/10.1021/la000660h
  12. Y. Han, S. S. Lee, and J. Y. Ying, Chem. Mater., 19, 2292 (2007). https://doi.org/10.1021/cm063050x
  13. X. Gao and S. Nie, Anal. Chem., 76, 2406 (2004). https://doi.org/10.1021/ac0354600
  14. T. R. Sathe, A. Agrawal and S. Nie, Anal. Chem., 78, 5627 (2006). https://doi.org/10.1021/ac0610309
  15. F. Baldini and A. Giannetti, Proc. SPIE., 5826, 485 (2005).