DOI QR코드

DOI QR Code

비화학양론적인 (K0.5Na0.5)0.97(Nb0.96-xTaxSb0.04)O3 세라믹스의 유전 및 압전특성

Piezoelectric and Dielectric Properties of Non-stochiometric(K0.5Na0.5)0.97(Nb0.96-xTaxSb0.04)O3 Ceramics

  • Sin, Sang-Hoon (Department of Electrical Engineering, Semyung University) ;
  • Noh, Jung-Rae (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University)
  • 투고 : 2012.07.05
  • 심사 : 2012.07.24
  • 발행 : 2012.08.01

초록

In this study non-stoichiometric $(K_{0.5}Na_{0.5})_{0.97}(Nb_{0.96-x}Ta_xSb_{0.04})O_3$ ceramics were prepared by the conventional soild-state teaction method. The effect of Ta-substitution on the dielectric and piezoelectric properties were investigated. X-ray diffraction analysis of all the specimens less than x= 15 mol% indicated orthorhombic phase. Thereafter, the specimens showed orthorhombic phase near to pseudo-cubic. Sinterablity of all the specimens was improved due to secondary products such as KCT and KCN. The ceramics with x= 5 mol% showed the optimum velues of pizoelectric constant($d_{33}$)= 150 pC/N, electromechanical coupling factor (kp)= 0.45, electromechanical quality factor (Qm)= 418.9 and dielectric constant(${\varepsilon}_r$)= 567. Accordingly, These results indicate that the composition ceramics is a promising candidate for lead-free material.

키워드

참고문헌

  1. M. Tackafumi, T. Norihito, I. Mutstuo, H. Tobias, and M. Takeshi, Mater. Lett., 64, 125 (2010). https://doi.org/10.1016/j.matlet.2009.10.012
  2. Y. Oh, J. Noh, J. Yoo, J. Kang, and L. Hwang, Transactuactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58, 1860 (2011). https://doi.org/10.1109/TUFFC.2011.2024
  3. Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett., 85, 4121 (2004). https://doi.org/10.1063/1.1813636
  4. M. Matsubara, K. Kikuta, and S. Hirano, J. Appl. Phys., 97, 114105 (2005). https://doi.org/10.1063/1.1926396
  5. Y. Guo, K. Kakimoto, and H. Ohsato, Mater. Lett., 59, 241 (2005). https://doi.org/10.1016/j.matlet.2004.07.057
  6. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S. J. Hirano, J. Am. Ceram. Soc., 88, 1190 (2005). https://doi.org/10.1111/j.1551-2916.2005.00229.x
  7. S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, J. Appl. Phys., 100, 104108 (2006). https://doi.org/10.1063/1.2382348
  8. Y. Lee, J. Yoo, K. Lee, I. Kim, J. Song, and Y. W. Park, J. Alloys and Comp., 506, 872 (2010). https://doi.org/10.1016/j.jallcom.2010.07.102
  9. F. Rubio-Marcos, P. Marchet, T. Merle-Mejean, and J. F. Fernandez, Mater. Chem. Phys., 123, 91 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.065
  10. S. H. Moon, S. H. Han, H. W. Kang, H. G. Lee, K. W. Chae, J. S. Kim, and C. I. Cheon, Ceramics International, 38S, 343 (2012).
  11. IEEE Standards on Piezoelectricity, The Institute of Electrical and Electronics Engineers Inc., IEEE Standard, 176 (1978).
  12. C. Yun, Y. Zupei, and W. Lingling, J. Am. Ceram. Soc., 90, 1656 (2007). https://doi.org/10.1111/j.1551-2916.2007.01631.x
  13. D. Lin, K. W. Kwok, and H. L. W. Chan, Appl. Phys., A91, 167 (2008).