Abstract
The dependency of processing pressure on the electrical performances in amorphous silicon-zinc-tin-oxide thin film transistors (SZTO-TFT) has been investigated. The SZTO channel layers were deposited by using radio frequency (RF) magnetron sputtering method with different partial pressure. The field effect mobility (${\mu}_{FE}$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing pressure during deposition processing. As a result, oxygen vacancies generated in SZTO channel layer with increasing partial pressure resulted in negative shift in $V_{th}$ and increase in on-current.