DOI QR코드

DOI QR Code

Research Progress in SiC-Based Ceramic Matrix Composites

  • Dong, Shaoming (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Wang, Zhen (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Zhou, Haijun (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Kan, Yan-Mei (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Zhang, Xiangyu (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Ding, Yusheng (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Gao, Le (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Wu, Bin (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences) ;
  • Hu, Jianbao (State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences)
  • Received : 2012.05.22
  • Accepted : 2012.06.26
  • Published : 2012.07.31

Abstract

SiC-based ceramic matrix composites show many advantages over their monolithic ceramic counterparts, which makes them potential candidates for applications in various fields. Depending strongly on the chemical composition and microstructure of the fiber reinforcement, matrix as well as the fiber/matrix interphase in the material, the properties of ceramic matrix composites(CMCs) are highly tailorable. In this paper, the latest progresses in the interphase design, matrix modification and fiber reinforcement decoration of CMCs are reviewed, their effects on the properties of the CMCs are introduced.

Keywords

References

  1. R. Naslain, A. Guette, F. Rebillat, R. Pailler,F. Langlais, and X. Bourrat, "Boron-bearing Species in Ceramic Matrix Composites for Long-term Aerospace Applications," J. Solid State Chem., 177 [2] 449-56 (2004). https://doi.org/10.1016/j.jssc.2003.03.005
  2. W. Krenkel and F. Berndt, "C/C-SiC Composites for Space Applications and Advanced Friction Systems," Mater. Sci. Eng. A., 412 [1-2] 177-81 (2005). https://doi.org/10.1016/j.msea.2005.08.204
  3. S. Schmidt, S. Beyer, H. Knabe, H. Immich,R. Meistring, and A. Gessler, "Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications," Acta Astronaut., 55 [3-9] 409-20 (2004). https://doi.org/10.1016/j.actaastro.2004.05.052
  4. R. Naslain, "Design, Preparation and Properties of Nonoxide CMCs for Application in Engines and Nuclear Reactors: An Overview," Compos. Sci. Technol., 64 [2] 155-70 (2004). https://doi.org/10.1016/S0266-3538(03)00230-6
  5. M. Imuta and J. Gotoh, "Development of High Temperature Materials Including CMCs for Space Application," High Temperature Ceramic Matrix Composites III, 164-1, 439-44 (1999). https://doi.org/10.4028/www.scientific.net/KEM.164-165.439
  6. U. Trabandt, H. G. Wulz, and T. Schmid, "CMC for Hot Structures and Control Surfaces of Future Launchers," High Temperature Ceramic Matrix Composites III, 164-1, 445-49 (1999).
  7. G. Ziegler, I. Richter, and D. Suttor, "Fiber-reinforced Composites with Polymer-derived Matrix: Processing, Matrix Formation and Properties," Compos. Pt. A-Appl. Sci. Manuf., 30 [4] 411-7 (1999). https://doi.org/10.1016/S1359-835X(98)00128-6
  8. D. P. Stinton, D. M. Hembree, K. L. More, B. W. Sheldon,T. M. Besmann, M. H. Headinger, and R. F. Davis, "Matrix Characterization of Fiber-Reinforced SiC Matrix Composites Fabricated by Chemical-Vapor Infiltration," J. Mater. Sci., 30 [17] 4279-85 (1995). https://doi.org/10.1007/BF00361507
  9. W. Krenkel, B. Heidenreich, and R. Renz, "C/C-SiC Composites for Advanced Friction Systems," Adv. Eng. Mater., 4 [7] 427-36 (2002). https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C
  10. S. M. Dong, Y. Katoh, and A. Kohyama, "Processing Optimization and Mechanical Evaluation of Hot Pressed 2D Tyranno-SA/SiC Composites," J. Eur. Ceram. Soc., 23 [8] 1223-31 (2003). https://doi.org/10.1016/S0955-2219(02)00298-4
  11. S. M. Dong, Y. Katoh, and A. Kohyama, "Preparation of SiC/SiC Composites by Hot Pressing, using Tyranno-SA Fiber as Reinforcement," J. Am. Ceram. Soc., 86 [1] 26-32 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03272.x
  12. S. M. Dong, Y. Katoh, A. Kohyama, S. T. Schwab, and L. L. Snead, "Microstructural Evolution and Mechanical Performances of SiC/SiC Composites by Polymer Impregnation/ microwave Pyrolysis (PIMP) Process," Ceram. Int., 28 [8] 899-905 (2002). https://doi.org/10.1016/S0272-8842(02)00071-8
  13. F. Christin, "Design, Fabrication, and Application of Thermostructural Composites (TSC) like C/C, C/SiC, and SiC/SiC Composites," Adv. Eng. Mater., 4 [12] 903-12 (2002). https://doi.org/10.1002/adem.200290001
  14. T. Taguchi, T. Nozawa, N. Igawa, Y. Katoh,S. Jitsukawa, and A. Kohyama, "Fabrication of Advanced SiC fiber/F-CVI SiC Matrix Composites with SiC/C Multi-layer Interphase," J. Nucl. Mater., 329 572-6 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.120
  15. T. M. Besmann, J. C. McLaughlin, and H. T. Lin, "Fabrication of Ceramic Composites - Forced Cvi," J. Nucl. Mater., 219 31-5 (1995). https://doi.org/10.1016/0022-3115(94)00395-5
  16. T. Noda, H. Araki, F. Abe, and M. Okada, "Microstructure and Mechanical-Properties of CVI Carbon-Fiber Sic Composites," J. Nucl. Mater., 191 539-43 (1992).
  17. Y. Z. Zhu, Z. R. Huang, S. M. Dong, M. Yuan, and D. L. Jiang, "Effect of Active Al Fillers on Properties of Pipderived SiCf/SiC Composites," J. Inorg. Mater., 22 [5] 954-58 (2007).
  18. Y.Z Zhu, M. Yuan, Z.R. Huang, S.M. Dong, and D.L. Jiang, "Effect of PCS Pyrolysis Process on C fiber in C-f/SiC Composite", pp. 1284-86, in: W.G.J.H. Pan (Ed.) High-Performance Ceramics IV, Pts 1-3, Vol. 336-338, 2007.
  19. H. B. Li, L. T. Zhang, L. F. Cheng, and Y. G. Wang, "Fabrication of 2D C/ZrC-SiC Composite and its Structural Evolution Under High-temperature Treatment up to $1800^{\circ}C$," Ceram. Int., 35 [7] 2831-6 (2009). https://doi.org/10.1016/j.ceramint.2009.03.030
  20. A. Kohyama, M. Kotani, Y. Katoh, T. Nakayasu, M. Sato, T. Yamamura, and K. Okamura, "High-performance SiC/SiC Composites by Improved PIP Processing with New Precursor Polymers," J. Nucl. Mater., 283 565-9 (2000). https://doi.org/10.1016/S0022-3115(00)00270-1
  21. Z. Wang, S. M. Dong, Y. S. Ding, X. Y. Zhang, H. J. Zhou, J. S. Yang, and B. Lu, "Mechanical Properties and Microstructures of C(f)/SiC-ZrC Composites using T700SC Carbon Fibers as Reinforcements," Ceram. Int., 37 [3] 695-700 (2011). https://doi.org/10.1016/j.ceramint.2010.09.048
  22. Z. Wang, L. Gao, Y. S. Ding, B. Wu, H. J. Zhou, P. He, and S. M. Dong, "Microstructure Observation and Analysis of 3D Carbon Fiber Reinforced SiC-based Composites Fabricated Through Filler Enhanced Polymer Infiltration and Pyrolysis," Ceram. Int., 38 [1] 535-40 (2012). https://doi.org/10.1016/j.ceramint.2011.07.039
  23. S. H. Lee, M. Weinmann, and F. Aldinger, "Processing and Properties of C/Si-B-C-N Fiber-reinforced Ceramic Matrix Composites Prepared by Precursor Impregnation and Pyrolysis," Act. Mater., 56 [7] 1529-38 (2008). https://doi.org/10.1016/j.actamat.2007.12.001
  24. A. G. Evans and D. B. Marshall, "The Mechanical-behavior of Ceramic Matrix Composites," Act. Metall., 37 [10] 2567-83 (1989). https://doi.org/10.1016/0001-6160(89)90291-5
  25. R. Naslain, "The Design of the Fibre-matrix Interfacial Zone in Ceramic Matrix Composites," Compos. Pt. A-Appl. Sci. Manuf., 29 [9-10] 1145-55 (1998). https://doi.org/10.1016/S1359-835X(97)00128-0
  26. Q. Zhou, S. M. Dong, X. Y. Zhang, Y. S. Ding, Z. R. Huang, and D. L. Jiang, "Carbon Fiber Surface Coating by Forced Pressure-pulsed CVI," J. Inorg. Mater., 21 [6] 1378-84 (2006).
  27. Q. Zhou, S. Dong, X. Zhang, Y. Ding,Z. Huang, and D. Jiang, "Effect of Interphase on Properties of Reaction Sintering C-f/SiC Composites," pp. 1279-82 in: Progresses in Fracture and Strength of Materials and Structures, 1-4, Vol. 353-8, 2007.
  28. Z. Wang, S. Dong, X. Zhang, H. Zhou,D. Wu, Q. Zhou, and D. Jiang, "Fabrication and Properties of C-f/SiC-ZrC Composites," J. Am. Ceram. Soc., 91 [10] 3434-6 (2008). https://doi.org/10.1111/j.1551-2916.2008.02632.x
  29. P. Greil, "Active-Filler-Controlled Pyrolysis of Preceramic Polymers," J. Am. Ceram. Soc., 78 [4] 835-48 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08404.x
  30. Y. Z. Zhu, Z. R. Huang, S. M. Dong, M. Yuan, and D. L. Jiang, "The Fabrication of 2D C(f)/SiC Composite by a Modified PIP Process using Active Al Powders as Active Filler," Mater. Charact., 59 [7] 975-8 (2008). https://doi.org/10.1016/j.matchar.2007.07.014
  31. Y. ZZhu, S. Zhu, Z. R. Huang, S. M. Dong, and D. L. Jiang, "Properties and Microstructure of KD-I/SiC Composites by Combined Process of CVI/RB/PIP," Mater. Sci. Eng. A., 477 [1-2] 198-203 (2008). https://doi.org/10.1016/j.msea.2007.05.062
  32. Y. Z. Zhu, Z. R. Huang, S. M. Dong, M. Yuan, and D. L. Jiang, "Fabricating 2.5D SiCf/SiC Composite using Polycarbosilane/SiC/Al Mixture for Matrix Derivation," J. Am. Ceram. Soc., 90 [3] 969-72 (2007). https://doi.org/10.1111/j.1551-2916.2006.01480.x
  33. Z. Wang, P. He, L. Gao, H. J. Zhou, J. S. Yang, and D. L. Jiang, "Fabrication of Carbon Fiber Reinforced Ceramic Matrix Composites with Improved Oxidation Resistance using Boron as Active Filler," J. Eur. Ceram. Soc., 30 [3] 787-92 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.015
  34. Q. G. Li, S. M. Dong, Z. Wang, P. He, J. S. Yang, B. Wu, and J. BHu, "Fabrication of a ZrC-SiC Matrix for Ceramic Matrix Composites and its Properties," Ceram. Int., 38 [5] 4379-84 (2012). https://doi.org/10.1016/j.ceramint.2012.01.023
  35. Q. G. Li, Z. Wang, P. He, H. J. Zhou, J. S. Yang, B. Wu, and J. B. Hu, "Fabrication and Properties of 3D Cf/SiC-ZrC Composites, Using ZrC Precursor and Polycarbosilane," J. Am. Ceram. Soc., 95 [4] 1216-9 (2012). https://doi.org/10.1111/j.1551-2916.2012.05116.x
  36. S. S. N. Katja Konig, Alja zIvekovi , and KatjaRade, "Decheng Meng and Aldo R. Boccaccini S.K., Fabrication of CNTSiC/SiC composites by electrophoretic deposition," J. Eur. Ceram. Soc., 30 [5] 1131-7 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.07.027
  37. L. M. Manocha, "Introduction of Nanostructures In Carbon-carbon Composites," Mater. Sci. Eng. A., 412 27-30 (2005). https://doi.org/10.1016/j.msea.2005.08.059
  38. S. B. Subhranshu and S. Samal, "Carbon Nanotube Reinforced Ceramic Matrix Composites- A Review," J. Minerals & Materials Characterization & Engineering, 7 [4] 355-70 (2008). https://doi.org/10.4236/jmmce.2008.74028
  39. W. A. Curtin and B . W. Sheldon, "CNTs-reinforced Ceramics and Metals," Mater. Today, 7 [11] 44-9 (2004).

Cited by

  1. /SiC Composite Using PIP with Adding of Cyclohexene vol.26, pp.5, 2013, https://doi.org/10.7234/composres.2013.26.5.322
  2. A Multi-Scale Submodel Method for Fatigue Analysis of Braided Composite Structures vol.14, pp.15, 2012, https://doi.org/10.3390/ma14154190