DOI QR코드

DOI QR Code

Preparation of Poly(imide-aramid-sulfone)s and their Thermal Properties

폴리(이미드-아라미드-설폰)의 합성과 그들의 열적성질

  • Park, Hyung-Seok (Deparment of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University) ;
  • Gong, Myoung-Seon (Deparment of Nanobiomedical Science and WCU Research Center of Nanobiomedical Science, Dankook University)
  • 박형석 (단국대학교 나노바이오의과학과) ;
  • 공명선 (단국대학교 나노바이오의과학과)
  • Received : 2011.12.01
  • Accepted : 2012.03.07
  • Published : 2012.07.25

Abstract

A series of poly(imide-aramid-sulfone)s with alternatingly introduced imide/aramid groups were prepared by reacting divinyl sulfone (DVS) and $N^1,N^4$-bis(4-(vinylsulfonyl)phenyl)terephthalamide (2) with pyromellitic diimide. Three model compounds, N-[2-(p-aminophnenylsulfonyl)ethyl]phthalimide (3), 2,2'-(2,2'-sulfonylbis(ethane-2,1-diyl))diisoindoline-1,3-dione (4), and N,N-bis(4-(2-(1,3-dioxoisoindolin-2-yl)ethylsulfonyl)phenyl)terephthalamide (5), resembling polymers were prepared with good yields by reacting p-aminophenyl vinyl sulfone, DVS, and 2 with phthalimide. Condensation polymerization was carried out by Michael-type addition reaction of the difunctional phthalimide group with the DVS group in the presence of tetrabutylammonium hydroxide (TBAH), resulting in poly(imide-aramid-sulfone)s 6-12 with moderate molecular weights and good yields. They were highly soluble in polar solvents such as N,N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidinone and tetrahydrofuran. The ratios of DVS/2 were 1/0, 3/1, 2/1, 1/1, 1/2, 1/3, and 0/1. Molecular weight and physical properties such as solubility, viscosity, and thermal properties of the polymers were examined.

이미드/아라미드/설폰기가 교대로 도입된 poly(imide-aramid-sulfone)s을 divinyl sulfone(DVS)과 $N^1,N^4$-bis(4-(vinylsulfonyl)phenyl)terephthalamide (2)를 pyromellitic diimide와 반응하여 높은 수율로 제조하였다. 또한 고분자를 닮은 3가지 모델 화합물인 N-[2-(p-aminophnenylsulfonyl)ethyl]phthalimide (3), 2,2'-(2,2'-sulfonylbis(ethane-2,1-diyl))diisoindoline-1,3-dione (4), 및 N,N-bis(4-(2-(1,3-dioxoisoindolin-2-yl)ethylsulfonyl)phenyl)terephthalamide (5)을p-aminophenyl vinyl sulfone, DVS, 2와 phthalimide와 반응하여 얻었다. 축합 중합은 phthalimide 기와 DVS의 마이클 첨가 반응에 의하여 균일 용액으로 진행되며 tetrabutylammonium hydroxide (TBAH)가 촉매로 작용하여 poly(imide-aramid-sulfone)s 6-12의 분자량이 큰 중합체를 얻을 수 있었다. DVS/2의 구성비는 1/0, 3/1, 2/1, 1/1, 1/2, 1/3, 및 0/1이다. 얻어진 고분자들은 극성 용매인 N,N-dimethylformamide, dimethylsulfoxide, N-methylpyrrolidinone 및 tetrahydrofuran에 잘 용해하였다. 그 밖에 분자량, 점도 그리고 열적 성질을 평가하였다.

Keywords

References

  1. M. K. Ghosh and K. L. Mittal, Polyimides: fundamentals and applications, M. Dekker, New York, 1996.
  2. A. H. Frazer, High temperature resistant polymers, Inter Science, New York, Chapter 2 (1968).
  3. S. Zhang, Y. Li, D. Yin, X. Wang, X. Shao, and S. Yang, Eur. Polym. J., 41, 1097 (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.014
  4. Z. Hu, Y. Yin, H. Kita, K. I. Okamoto, Y. Suto, H. Wang, and H. Kawasato, Polymer, 48, 1962 (2007). https://doi.org/10.1016/j.polymer.2007.02.011
  5. Y. Shao, Y. Li, X. Zhao, T. Ma, C. Gong, and F. Yang, Eur. Polym. J., 43, 4389 (2007). https://doi.org/10.1016/j.eurpolymj.2007.07.002
  6. H. Choi, I. S. Chung, K. Hong, C. E. Park, and S. Y. Kim, Polymer, 49, 2644 (2008). https://doi.org/10.1016/j.polymer.2008.04.019
  7. M. Ghaemy and R. Alizadeh, Eur. Polym. J., 45, 1681 (2009). https://doi.org/10.1016/j.eurpolymj.2009.03.006
  8. H. Yeganeh and S. Mehdipour-Ataei, J. Polym. Sci. Part A: Polym. Chem., 38, 1528 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000501)38:9<1528::AID-POLA16>3.0.CO;2-F
  9. I. K. Spiliopoulos and J. A. Mikroyannidis, Macromolecules, 29, 5313 (1996). https://doi.org/10.1021/ma9602233
  10. G. S. Liou, H.W. Chen, and H. J. Yen, J. Polym. Sci. Part A: Polym. Chem., 44, 4108 (2006). https://doi.org/10.1002/pola.21517
  11. E. S. Lee, S. K. Hong, Y. S. Kim, J. H. Lee, I. Kim, and J. C. Won, Polymer(Korea), 30, 140 (2006).
  12. A. Davis, Makromol. Chem., 128, 242 (1969). https://doi.org/10.1002/macp.1969.021280123
  13. V. L. Rao, J. Macromol. Sci. Rev., Macromol. Chem. Phys., C39, 655 (1999).
  14. D. Macocinschi, A. Grigoriu, and D. Filip, Eur. Polym. J., 38, 1025 (2002). https://doi.org/10.1016/S0014-3057(01)00253-1
  15. M. Russo and L. Mortillaro, J. Polym. Sci. A-1, 7, 3337 (1969). https://doi.org/10.1002/pol.1969.150071207
  16. Y. Imai, H. Shimizu, Y. Sato, and M. Ueda, J. Polym. Sci., Polym. Chem. Ed., 19, 3031 (1981). https://doi.org/10.1002/pol.1981.170191135
  17. J. C. Lim, M. Suzuki, and T. Saegusa, J. Polym. Sci. Part A: Polym. Chem., 12, 3093 (1993).
  18. P. Schmidt-Winkel and F. Wudl, Macromolecules, 31, 2911 (1998). https://doi.org/10.1021/ma971799a
  19. C. Gao and D. Y. Yan, Chem. Commun., 107 (2001).
  20. R. E. Cook, K. J. Ivin, and J. H. O'Donnell, Trans. Faraday Soc., 55, 262 (1959). https://doi.org/10.1039/tf9595500262
  21. J. S. Hwang and C. P. Tsonis, J. Polym. Sci. Part A: Polym. Chem., 31, 1417 (1993). https://doi.org/10.1002/pola.1993.080310608
  22. Z. Florjanczyk and D. Raducha, Makromol. Chem., 194, 2605 (1993). https://doi.org/10.1002/macp.1993.021940916
  23. I. Cho, Prog. Polym. Sci., 25, 1013 (2000).
  24. M. Russo and L. Mortillaro, J. Polym. Sci. A-1, 7, 3337 (1969).
  25. J. S. Park and J. H. Chang, Polymer(Korea), 32, 580 (2008).
  26. I. W. Choi and J. H. Chang, Polymer(Korea), 34, 97 (2010).
  27. I. W. Choi and J. H. Chang, Polymer(Korea), 34, 391 (2010).
  28. Y. M. Jeon and M. S. Gong, Macromol. Res., 17, 227 (2009). https://doi.org/10.1007/BF03218684
  29. S. H. Kim and M. S. Gong, Macromol. Res., 15, 17 (2007). https://doi.org/10.1007/BF03218747
  30. Z. Rappoport, Advances in Physical Organic Chemistry, Academic Press, London & New York, Vol 7 (1969).
  31. P. Nobler, Jr., T. G. Borgardt, and W. L. Reed, Chem. Rev., 19, 64 (1964).