DOI QR코드

DOI QR Code

Effect of Enzymatic Hydrolysis on Polylactic Acid Fabrics by Lipases from Different Origins

  • Lee, So-Hee (Dept. of Clothing & Textiles, Sookmyung Women's University) ;
  • Song, Wha-Soon (Dept. of Clothing & Textiles, Sookmyung Women's University)
  • Received : 2012.05.30
  • Accepted : 2012.06.21
  • Published : 2012.06.30

Abstract

This study measured the effect of general pre-treatment on PLA fabrics to confirm the benefits of enzymatic processing on PLA fabrics in the textile industry as well as evaluated the hydrolytic activities of three lipases. The effects of lipase hydrolysis were analyzed through moisture regain, dyeing ability, tensile strength, and surface morphology. As a result, PLA fibers were easily damaged by a low concentration of sodium hydroxide and a low treatment temperature. The optimal treatment conditions of Lipase from Candida cylindracea were pH 8.0, $40^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Candida rugosa were pH 7.2, $37^{\circ}C$, and 1,000 U. The optimal treatment conditions for Lipase from Porcine pancreas were pH 8.0, $37^{\circ}C$, and 2,000 U. The moisture regain and dyeing ability of PLA fabrics increased and the tensile strength of PLA fabrics decreased. The results of surface morphology revealed that there were some cracks due to hydrolysis on the surface of the fiber.

Keywords

References

  1. Akin, D. E., Slomczynski, D., Rigsby, L. L., & Eriksson, K. L. (2002). Retting flax with endopolygalacturonase from Rhizopus Oryzae. Textile Research Journal, 72(1), 27-34. https://doi.org/10.1177/004051750207200105
  2. Aly, A. S., Moustafa, A. B., & Hebeish, A. (2004). Biotechnological treatment of cellulosic textiles. Journal of Cleaner Production, 12(7), 697-705. https://doi.org/10.1016/S0959-6526(03)00074-X
  3. Averous, L. (2002). Polylactic acid: Synthesis, properties and applications. In M. Belgacem & A. Gandini (Eds.), Monomers, polymers and composites from renewable resources (pp. 433-450). Amsterdam: Elsavier.
  4. Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12 (23), 1841-1846. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  5. Eberl, A., Heumann, S., Kotek, R., Kaufmann, F., Mitsche, S., Cavaco-Paulo, A., & Gubitz, G. M. (2008). Enzymatic hydrolysis of PTT polymers and oligomers. Journal of Biotechnology, 135(1), 45-51. https://doi.org/10.1016/j.jbiotec.2008.02.015
  6. Cavaco-Paulo, A. (1998). Processing textile fibers with enzymes: An overview. In K. E. Erriksson & A. Cavaco-Paulo (Eds.), Enzyme application in fiber processing (pp. 180-189). Washington D.C.: American Chemical Society.
  7. Farrington, D. W., Lunt, J., Davies, S., & Blackburn, R. S. (2005). Poly(lactic acid) fibers. In R. S. Blackburn (Ed.) Biodegradable and sustainable fibres (pp. 191-220). Cambridge: Woodhead Publishing Limited.
  8. Guebitz, G. M., & Cavaco-Paulo, A. (2008). Enzymes go big: Surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 26(1), 32-38. https://doi.org/10.1016/j.tibtech.2007.10.003
  9. Hsieh, Y. L., & Cram, L. A. (1998). Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Textile Research Journal, 68(5), 311-319. https://doi.org/10.1177/004051759806800501
  10. Kadolph, S. J. (2004). Textiles (11th ed.). New Jersey: Prentice Hall.
  11. Kamm, B., & Kamm, M. (2004). Principles of biorefineries. Applied Microbiology and Biotechnology, 64(2), 137-145. https://doi.org/10.1007/s00253-003-1537-7
  12. Kamm, B., Kamm, M., Gruber, P. R., & Kromus, S. (2008). Biorefineries-industrial processes and products. In: B. Kamm, P. R. Gruber, & M. Kamm (Eds.), Ullmann's encyclopedia of industrial chemistry (pp. 1-40). Weinheim: Wiley-VCH.
  13. Lee, S. H., Kim, H. R., Lee, B. H., & Song, W. S. (2010). Enzymatic hydrolysis of chitosan fiber using cellulase and papain. Textile Science and Engineering, 47(3), 212-221.
  14. Lee, S. H., & Song, W. S. (2010). Surface modification of polyester fabrics by enzyme treatment. Fibers and Polymers, 11(1), 54-59. https://doi.org/10.1007/s12221-010-0054-4
  15. Lee, S. H., & Song, W. S. (2011a). Enzymatic hydrolysis of polylactic acid fiber. Applied Biochemistry and Biotechnology, 164(1), 89-102. https://doi.org/10.1007/s12010-010-9117-7
  16. Lee, S. H., & Song, W. S. (2011b). Hydrolysis of polylactic acid fiber by lipase from porcine pancreas. Journal of Korean Society of Clothing and Textiles, 35(6), 670-677. https://doi.org/10.5850/JKSCT.2011.35.6.670
  17. Lee, S. H., Song, W. S., & Kim, H. R. (2009). Cutinase treatment of cotton fabrics. Fibers and Polymers, 10 (6), 802-806. https://doi.org/10.1007/s12221-009-0802-5
  18. Mayumi, D., Akutsu-Shigeno, Y., Uchiyama, H., Nomura, N., & Nakajima-Kambe, T. (2008). Identification and characterization of novel poly (DL-lactic acid) depolymerases from metagenome. Applied Microbiology and Biotechnology, 79(5), 743-750. https://doi.org/10.1007/s00253-008-1477-3
  19. Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317-1324. https://doi.org/10.1016/S0266-3538(03)00103-9
  20. Sawada, K., Urakawa, M., & Ueda, M. (2007). Modification of polylactic acid fiber with enzymatic treatment. Textile Research Journal, 77(11), 901-905. https://doi.org/10.1177/0040517507082331
  21. Scheyer, L. E., & Chiweshe, A. (2001). Application and performance of disperse dyes on polylactic acid (PLA) fabric. AATCC Review, 7, 44-48.
  22. Steinbichel, A. (2002). Biopolymers: biology, chemistry, biotechnology, applications. Weinheim: Willy-VCH.
  23. Tokiwa, Y., & Jarerat, A. (2004). Biodegradation of poly (L-lactide). Biotechnology Letters, 26(10), 771-777. https://doi.org/10.1023/B:BILE.0000025927.31028.e3
  24. Vertomen, M. A. M. E., Nierstrasz, V. A., van der Verr, M., & Warmoeskerken, M. M. C. G. (2005). Enzymatic surface modification of poly (ethylene terephthalate). Journal of Biotechnology, 120(4), 376-386. https://doi.org/10.1016/j.jbiotec.2005.06.015
  25. Yoon, M. Y., Kellis, J., & Poulose, A. J. (2002). Enzymatic modification of polyester. AATCC Review, 8, 33-36.

Cited by

  1. Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis vol.17, pp.8, 2016, https://doi.org/10.1007/s12221-016-5923-z
  2. Biodegradation of polylactic acid (PLA) fibers using different enzymes vol.22, pp.6, 2014, https://doi.org/10.1007/s13233-014-2107-9