DOI QR코드

DOI QR Code

1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

  • Jung, Jee-Youn (Korea Basic Science Institute) ;
  • Kim, Il-Yong (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University) ;
  • Kim, Yo-Na (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University) ;
  • Kim, Jin-Sup (Korea Basic Science Institute) ;
  • Shin, Jae-Hoon (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University) ;
  • Jang, Zi-Hey (Korea Basic Science Institute) ;
  • Lee, Ho-Sub (Department of Physiology, College of Oriental Medicine, Wonkwang University) ;
  • Hwang, Geum-Sook (Korea Basic Science Institute) ;
  • Seong, Je-Kyung (Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Research Institute for Veterinary Science, BK21 Program for Veterinary Science, Seoul National University)
  • Received : 2011.11.18
  • Accepted : 2011.12.08
  • Published : 2012.07.31

Abstract

High-fat diets (HFD) and high-carbohydrate diets (HCD)-induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ($^1H$ NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from $^1H$ NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that $^1H$ NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.

Keywords

References

  1. Du, S., Mroz, T. A., Zhai, F. and Popkin, B. M. (2004) Rapid income growth adversely affects diet quality in China-particularly for the poor! Soc. Sci. Med. 59, 1505-1515. https://doi.org/10.1016/j.socscimed.2004.01.021
  2. Park, H. S., Oh, S. W., Cho, S. I., Choi, W. H. and Kim, Y. S. (2004) The metabolic syndrome and associated lifestyle factors among South Korean adults. Int. J. Epidemiol. 33, 328-336. https://doi.org/10.1093/ije/dyh032
  3. Dreon, D. M., Frey-Hewitt, B., Ellsworth, N., Williams, P. T., Terry, R. B. and Wood, P. D. (1988) Dietary fat:carbohydrate ratio and obesity in middle-aged men. Am. J. Clin. Nutr. 47, 995-1000. https://doi.org/10.1093/ajcn/47.6.995
  4. George, V., Tremblay, A., Despres, J. P., Leblanc, C. and Bouchard, C. (1990) Effect of dietary fat content on total and regional adiposity in men and women. Int. J. Obes. 14, 1085-1094.
  5. Duncan, K. H., Bacon, J. A. and Weinsier, R. L. (1983) The effects of high and low energy density diets on satiety, energy intake, and eating time of obese and nonobese subjects. Am. J. Clin. Nutr. 37, 763-767. https://doi.org/10.1093/ajcn/37.5.763
  6. Horton, T. J., Drougas, H., Brachey, A., Reed, G. W., Peters, J. C. and Hill, J. O. (1995) Fat and carbohydrate overfeeding in humans: different effects on energy storage. Am. J. Clin. Nutr. 62, 19-29. https://doi.org/10.1093/ajcn/62.1.19
  7. Stubbs, R., Ritz, P., Coward, W. and Prentice, A. (1995) Covert manipulation of the ratio of dietary fat to carbohydrate and energy density: effect on food intake and energy balance in free-living men eating ad libitum. Am. J. Clin. Nutr. 62, 330. https://doi.org/10.1093/ajcn/62.2.330
  8. Garg, A., Bonanome, A., Grundy, S. M., Zhang, Z. J. and Unger, R. H. (1988) Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin- dependent diabetes mellitus. N. Engl. J. Med. 319, 829-834. https://doi.org/10.1056/NEJM198809293191304
  9. Kamari, Y., Grossman, E., Oron-Herman, M., Peleg, E., Shabtay, Z., Shamiss, A. and Sharabi, Y. (2007) Metabolic stress with a high carbohydrate diet increases adiponectin levels. Horm. Metab. Res. 39, 384-388. https://doi.org/10.1055/s-2007-976534
  10. Kang, H., Greenson, J. K., Omo, J. T., Chao, C., Peterman, D., Anderson, L., Foess-Wood, L., Sherbondy, M. A. and Conjeevaram, H. S. (2006) Metabolic syndrome is associated with greater histologic severity, higher carbohydrate, and lower fat diet in patients with NAFLD. Am. J. Gastroenterol. 101, 2247. https://doi.org/10.1111/j.1572-0241.2006.00719.x
  11. Connor, W. E., Connor, S. L., Katan, M. B., Grundy, S. M. and Willett, W. C. (1997) Should a low-fat, high-carbohydrate diet be recommended for everyone? N. Engl. J. Med. 337, 562-567. https://doi.org/10.1056/NEJM199708213370811
  12. Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G. and Kell, D. B. (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends. Biotechnol. 22, 245-252. https://doi.org/10.1016/j.tibtech.2004.03.007
  13. Nicholson, J. K., Lindon, J. C. and Holmes, E. (1999) 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29, 1181-1189. https://doi.org/10.1080/004982599238047
  14. Jung, J., Park, M., Park, H. J., Shim, S. B., Cho, Y. H., Kim, J., Lee, H. S., Ryu do, H., Choi, D. and Hwang, G. S. (2011) (1)H NMR-based metabolic profiling of naproxen-induced toxicity in rats. Toxicol. Lett. 200, 1-7 https://doi.org/10.1016/j.toxlet.2010.09.020
  15. Winnike, J. H., Busby, M. G., Watkins, P. B. and O'Connell, T. M. (2009) Effects of a prolonged standardized diet on normalizing the human metabolome. Am. J. Clin. Nutr. 90, 1496-1501. https://doi.org/10.3945/ajcn.2009.28234
  16. Zubritsky, E. (2006) Diet and time of day strongly influence metabolomic studies. Anal. Chem. 78, 7907. https://doi.org/10.1021/ac069495m
  17. Kim, S. H., Yang, S. O., Kim, H. S., Kim, Y., Park, T. and Choi, H. K. (2009) 1H-nuclear magnetic resonance spectroscopy- based metabolic assessment in a rat model of obesity induced by a high-fat diet. Anal. Bioanal. Chem. 395, 1117-1124. https://doi.org/10.1007/s00216-009-3054-8
  18. Kleemann, R., Verschuren, L., van Erk, M. J., Nikolsky, Y., Cnubben, N. H., Verheij, E. R., Smilde, A. K., Hendriks, H. F., Zadelaar, S., Smith, G. J., Kaznacheev, V., Nikolskaya, T., Melnikov, A., Hurt-Camejo, E., van der Greef, J., van Ommen, B. and Kooistra, T. (2007) Atherosclerosis and liver inflammation induced by increased dietary cholesterol intake: a combined transcriptomics and metabolomics analysis. Genome. Biol. 8, R200. https://doi.org/10.1186/gb-2007-8-9-r200
  19. Shearer, J., Duggan, G., Weljie, A., Hittel, D. S., Wasserman, D. H. and Vogel, H. J. (2008) Metabolomic profiling of dietary- induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes. Obes. Metab. 10, 950-958. https://doi.org/10.1111/j.1463-1326.2007.00837.x
  20. Cheng, K.-K., Benson, G. M., Grimsditch, D. C., Reid, D. G., Connor, S. C. and Griffin, J. L. (2010) Metabolomic study of the LDL receptor null mouse fed a high-fat diet reveals profound perturbations in choline metabolism that are shared with ApoE null mice. Physiol. Genomic. 41, 224-231. https://doi.org/10.1152/physiolgenomics.00188.2009
  21. Eriksson, L., Andersson, P. L., Johansson, E. and Tysklind, M. (2006) Megavariate analysis of environmental QSAR data. Part I--a basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Mol. Divers 10, 169-186. https://doi.org/10.1007/s11030-006-9024-6
  22. Abbott, W. G., Howard, B. V., Christin, L., Freymond, D., Lillioja, S., Boyce, V. L., Anderson, T. E., Bogardus, C. and Ravussin, E. (1988) Short-term energy balance: relationship with protein, carbohydrate, and fat balances. Am. J. Physiol. 255, E332-337.
  23. Flatt, J., Ravussin, E., Acheson, K. J. and Jequier, E. (1985) Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. J. Clin. Invest. 76, 1019. https://doi.org/10.1172/JCI112054
  24. Hill, J. O., Peters, J. C., Reed, G. W., Schlundt, D. G., Sharp, T. and Greene, H. L. (1991) Nutrient balance in humans: effects of diet composition. Am. J. Clin. Nutr. 54, 10-17. https://doi.org/10.1093/ajcn/54.1.10
  25. Bremer, J. (1983) Carnitine--metabolism and functions. Physiological. reviews 63, 1420. https://doi.org/10.1152/physrev.1983.63.4.1420
  26. Schrauwen, P., Wagenmakers, A. J., van Marken Lichtenbelt, W. D., Saris, W. H. and Westerterp, K. R. (2000) Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation. Diabetes. 49, 640-646. https://doi.org/10.2337/diabetes.49.4.640
  27. Murray, K. N. and Chaykin, S. (1966) The reduction of nicotinamide N-oxide by xanthine oxidase. J. Biol. Chem. 241, 3468-3473.
  28. Riederer, M., Erwa, W., Zimmermann, R., Frank, S. and Zechner, R. (2009) Adipose tissue as a source of nicotinamide N-methyltransferase and homocysteine. Atherosclerosis. 204, 412-417. https://doi.org/10.1016/j.atherosclerosis.2008.09.015
  29. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. and Shimomura, I. (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752-1761. https://doi.org/10.1172/JCI21625
  30. Erdei, N., Toth, A., Pasztor, E. T., Papp, Z., Edes, I., Koller, A. and Bagi, Z. (2006) High-fat diet-induced reduction in nitric oxide-dependent arteriolar dilation in rats: role of xanthine oxidase- derived superoxide anion. Am. J. Physiol. Heart. Circ. Physiol. 291, H2107-2115. https://doi.org/10.1152/ajpheart.00389.2006
  31. Houstis, N., Rosen, E. D. and Lander, E. S. (2006) Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 440, 944-948. https://doi.org/10.1038/nature04634
  32. Zhou, S. S., Li, D., Sun, W. P., Guo, M., Lun, Y. Z., Zhou, Y. M., Xiao, F. C., Jing, L. X., Sun, S. X., Zhang, L. B., Luo, N., Bian, F. N., Zou, W., Dong, L. B., Zhao, Z. G., Li, S. F., Gong, X. J., Yu, Z. G., Sun, C. B., Zheng, C. L., Jiang, D. J. and Li, Z. N. (2009) Nicotinamide overload may play a role in the development of type 2 diabetes. World J. Gastroenterol. 15, 5674-5684. https://doi.org/10.3748/wjg.15.5674
  33. Li, D., Sun, W. P., Zhou, Y. M., Liu, Q. G., Zhou, S. S., Luo, N., Bian, F. N., Zhao, Z. G. and Guo, M. (2010) Chronic niacin overload may be involved in the increased prevalence of obesity in US children. World J. Gastroenterol. 16, 2378-2387. https://doi.org/10.3748/wjg.v16.i19.2378
  34. Kim, I. Y., Jung, J., Jang, M., Ahn, Y. G., Shin, J. H., Choi, J. W., Sohn, M. R., Shin, S. M., Kang, D. G., Lee, H. S., Bae, Y. S., Ryu do, H., Seong, J. K. and Hwang, G. S. (2010) $^{1}H$ NMR-based metabolomic study on resistance to diet-induced obesity in AHNAK knock-out mice. Biochem. Biophys. Res. Commun. 403, 428-434. https://doi.org/10.1016/j.bbrc.2010.11.048
  35. Holmes, E., Li, J. V., Athanasiou, T., Ashrafian, H. and Nicholson, J. K. (2011) Understanding the role of gut microbiome- host metabolic signal disruption in health and disease. Trends. Microbiol. 19, 349-359. https://doi.org/10.1016/j.tim.2011.05.006
  36. Kanarek, R. B. and Orthen-Gambill, N. (1982) Differential effects of sucrose, fructose and glucose on carbohydrate-induced obesity in rats. J. Nutr. 112, 1546-1554. https://doi.org/10.1093/jn/112.8.1546
  37. Skov, T., van den Berg, F., Tomasi, G. and Bro, R. (2006) Automated alignment of chromatographic data. J. Chemom. 20, 484-497. https://doi.org/10.1002/cem.1031

Cited by

  1. Gender-Specific Metabolomic Profiling of Obesity in Leptin-Deficient ob/ob Mice by 1H NMR Spectroscopy vol.8, pp.10, 2013, https://doi.org/10.1371/journal.pone.0075998
  2. Distinct signatures of host–microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet vol.8, pp.12, 2014, https://doi.org/10.1038/ismej.2014.79
  3. A1H NMR-based metabonomic investigation of time-dependent metabolic trajectories in a high salt-induced hypertension rat model vol.5, pp.1, 2015, https://doi.org/10.1039/C4RA07215D
  4. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity vol.408, pp.2, 2016, https://doi.org/10.1007/s00216-015-9133-0
  5. “Omics” Prospective Monitoring of Bariatric Surgery: Roux-En-Y Gastric Bypass Outcomes Using Mixed-Meal Tolerance Test and Time-Resolved1H NMR-Based Metabolomics vol.20, pp.7, 2016, https://doi.org/10.1089/omi.2016.0061
  6. Chemical Constituents Identified from Fruit Body of Cordyceps bassiana and Their Anti-Inflammatory Activity vol.25, pp.2, 2017, https://doi.org/10.4062/biomolther.2016.063
  7. Power of metabolomics in biomarker discovery and mining mechanisms of obesity vol.14, pp.4, 2013, https://doi.org/10.1111/obr.12011
  8. Blood Metabolome Changes Before and After Bariatric Surgery: A1H NMR-Based Clinical Investigation vol.19, pp.5, 2015, https://doi.org/10.1089/omi.2015.0009
  9. A 1H NMR-Based Metabonomic Investigation of Time-Related Metabolic Trajectories of the Plasma, Urine and Liver Extracts of Hyperlipidemic Hamsters vol.8, pp.6, 2013, https://doi.org/10.1371/journal.pone.0066786
  10. Metabolomics Reveals thatMomordica charantiaAttenuates Metabolic Changes in Experimental Obesity vol.31, pp.2, 2017, https://doi.org/10.1002/ptr.5748
  11. 1H NMR-based metabolic study reveals the improvements of bitter melon (Momordica charantia) on energy metabolism in diet-induced obese mouse vol.54, pp.12, 2016, https://doi.org/10.1080/13880209.2016.1211713
  12. Urinary metabolomics of pregnant women at term: a combined GC/MS and NMR approach vol.27, pp.sup2, 2014, https://doi.org/10.3109/14767058.2014.956403
  13. The effects of liraglutide in mice with diet-induced obesity studied by metabolomics vol.233, pp.1, 2017, https://doi.org/10.1530/JOE-16-0478
  14. Strategy for NMR metabolomic analysis of urine in mouse models of obesity— from sample collection to interpretation of acquired data vol.115, 2015, https://doi.org/10.1016/j.jpba.2015.06.036
  15. 1H NMR-Based Profiling Reveals Differential Immune-Metabolic Networks during Influenza Virus Infection in Obese Mice vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0097238
  16. Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance vol.58, pp.4, 2015, https://doi.org/10.1007/s00125-014-3490-7
  17. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis vol.51, pp.9, 2013, https://doi.org/10.1002/mrc.3985
  18. Urinary Loss of Tricarboxylic Acid Cycle Intermediates As Revealed by Metabolomics Studies: An Underlying Mechanism to Reduce Lipid Accretion by Whey Protein Ingestion? vol.13, pp.5, 2014, https://doi.org/10.1021/pr500039t
  19. 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala vol.13, pp.2, 2017, https://doi.org/10.1007/s11306-016-1158-7
  20. Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration vol.114, pp.22, 2017, https://doi.org/10.1073/pnas.1702302114
  21. Metabonomic Changes Associated with Atherosclerosis Progression forLDLR–/–Mice vol.14, pp.5, 2015, https://doi.org/10.1021/acs.jproteome.5b00032
  22. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination vol.431, 2016, https://doi.org/10.1016/j.mce.2016.05.003
  23. Metabolomics Insights into the Modulatory Effects of Long-Term Low Calorie Intake in Mice vol.15, pp.7, 2016, https://doi.org/10.1021/acs.jproteome.6b00336
  24. Metabonomic analysis of serum reveals antifatigue effects of Yi Guan Jian on fatigue mice using gas chromatography coupled to mass spectrometry vol.32, pp.2, 2017, https://doi.org/10.1002/bmc.4085
  25. Alcohol-Induced Hepatic Steatosis: A Comparative Study to Identify Possible Indicator(s) of Alcoholic Fatty Liver Disease vol.7, pp.2090-8342, 2018, https://doi.org/10.4303/jdar/236040
  26. Caloric restriction promotes functional changes involving short-chain fatty acid biosynthesis in the rat gut microbiota vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33100-y