DOI QR코드

DOI QR Code

Central energy metabolism remains robust in acute steatotic hepatocytes challenged by a high free fatty acid load

  • Niklas, Jens (Insilico Biotechnology AG) ;
  • Bonin, Anne (Insilico Biotechnology AG) ;
  • Mangin, Stefanie (Insilico Biotechnology AG) ;
  • Bucher, Joachim (Insilico Biotechnology AG) ;
  • Kopacz, Stephanie (Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tubingen) ;
  • Matz-Soja, Madlen (Institute of Biochemistry, Faculty of Medicine, University of Leipzig) ;
  • Thiel, Carlo (Institute of Biochemistry, Faculty of Medicine, University of Leipzig) ;
  • Gebhardt, Rolf (Institute of Biochemistry, Faculty of Medicine, University of Leipzig) ;
  • Hofmann, Ute (Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tubingen) ;
  • Mauch, Klaus (Insilico Biotechnology AG)
  • Received : 2012.03.21
  • Accepted : 2012.04.17
  • Published : 2012.07.31

Abstract

Overnutrition is one of the major causes of non-alcoholic fatty liver disease (NAFLD). NAFLD is characterized by an accumulation of lipids (triglycerides) in hepatocytes and is often accompanied by high plasma levels of free fatty acids (FFA). In this study, we compared the energy metabolism in acute steatotic and non-steatotic primary mouse hepatocytes. Acute steatosis was induced by pre-incubation with high concentrations of oleate and palmitate. Labeling experiments were conducted using [$U-^{13}C_5$,$U-^{15}N_2$] glutamine. Metabolite concentrations and mass isotopomer distributions of intracellular metabolites were measured and applied for metabolic flux estimation using transient $^{13}C$ metabolic flux analysis. FFAs were efficiently taken up and almost completely incorporated into triglycerides (TAGs). In spite of high FFA uptake rates and the high synthesis rate of TAGs, central energy metabolism was not significantly changed in acute steatotic cells. Fatty acid ${\beta}$-oxidation does not significantly contribute to the detoxification of FFAs under the applied conditions.

Keywords

References

  1. Bedogni, G., Miglioli, L., Masutti, F., Tiribelli, C., Marchesini, G. and Bellentani, S. (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42, 44-52.
  2. Anderson, N. and Borlak, J. (2008) Molecular Mechanisms and Therapeutic Targets in Steatosis and Steatohepatitis. Pharmacological Reviews 60, 311-357. https://doi.org/10.1124/pr.108.00001
  3. Bradbury, M. W. (2006) Lipid metabolism and liver inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G194-198. https://doi.org/10.1152/ajpgi.00413.2005
  4. Donnelly, K. L., Smith, C. I., Schwarzenberg, S. J., Jessurun, J., Boldt, M. D. and Parks, E. J. (2005) Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343-1351. https://doi.org/10.1172/JCI23621
  5. Brady, L. J., Brady, P. S., Romsos, D. R. and Hoppel, C. L. (1985) Elevated hepatic mitochondrial and peroxisomal oxidative capacities in fed and starved adult obese (ob/ob) mice. Biochem. J. 231, 439-444. https://doi.org/10.1042/bj2310439
  6. Mollica, M. P., Lionetti, L., Moreno, M., Lombardi, A., De Lange, P., Antonelli, A., Lanni, A., Cavaliere, G., Barletta, A. and Goglia, F. (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J. Hepatol. 51, 363-370. https://doi.org/10.1016/j.jhep.2009.03.023
  7. Serviddio, G., Bellanti, F., Tamborra, R., Rollo, T., Capitanio, N., Romano, A. D., Sastre, J., Vendemiale, G. and Altomare, E. (2008) Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia- reperfusion injury. Gut 57, 957-965. https://doi.org/10.1136/gut.2007.147496
  8. Fromenty, B. and Pessayre, D. (1995) Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther. 67, 101-154. https://doi.org/10.1016/0163-7258(95)00012-6
  9. Miele, L., Grieco, A., Armuzzi, A., Candelli, M., Forgione, A., Gasbarrini, A. and Gasbarrini, G. (2003) Hepatic mitochondrial beta-oxidation in patients with nonalcoholic steatohepatitis assessed by $^{13}C$-octanoate breath test. Am. J. Gastroenterol. 98, 2335-2336. https://doi.org/10.1111/j.1572-0241.2003.07725.x
  10. Vial, G., Dubouchaud, H., Couturier, K., Cottet-Rousselle, C., Taleux, N., Athias, A., Galinier, A., Casteilla, L. and Leverve, X. M. (2011) Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J. Hepatol. 54, 348-356. https://doi.org/10.1016/j.jhep.2010.06.044
  11. Malhi, H., Bronk, S. F., Werneburg, N. W. and Gores, G. J. (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J. Biol. Chem. 281, 12093-12101. https://doi.org/10.1074/jbc.M510660200
  12. Niklas, J. and Heinzle, E. (2012) Metabolic flux analysis in systems biology of Mammalian cells. Adv. Biochem. Eng. Biotechnol. 127, 109-132.
  13. Niklas, J., Schneider, K. and Heinzle, E. (2010) Metabolic flux analysis in eukaryotes. Curr. Opin. Biotechnol. 21, 63-69. https://doi.org/10.1016/j.copbio.2010.01.011
  14. Maier, K., Hofmann, U., Reuss, M. and Mauch, K. (2008) Identification of metabolic fluxes in hepatic cells from transient $^{13}C$-labeling experiments: Part II. Flux estimation. Biotechnol. Bioeng. 100, 355-370. https://doi.org/10.1002/bit.21746
  15. Noh, K. and Wiechert, W. (2011) The benefits of being transient: isotope-based metabolic flux analysis at the short time scale. Appl. Microbiol. Biotechnol. 91, 1247-1265. https://doi.org/10.1007/s00253-011-3390-4
  16. Swagell, C. D., Henly, D. C. and Morris, C. P. (2007) Regulation of human hepatocyte gene expression by fatty acids. Biochem. Biophys. Res. Commun. 362, 374-380. https://doi.org/10.1016/j.bbrc.2007.07.191
  17. Swagell, C. D., Henly, D. C. and Morris, C. P. (2005) Expression analysis of a human hepatic cell line in response to palmitate. Biochem. Biophys. Res. Commun. 328, 432-441. https://doi.org/10.1016/j.bbrc.2004.12.188
  18. Swagell, C. D., Morris, C. P. and Henly, D. C. (2006) Effect of fatty acids, glucose and insulin on hepatic glucose uptake and glycolysis. Nutrition 22, 672-678. https://doi.org/10.1016/j.nut.2006.03.005
  19. Saltiel, A. R. and Kahn, C. R. (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799-806.
  20. Akkaoui, M., Cohen, I., Esnous, C., Lenoir, V., Sournac, M., Girard, J. and Prip-Buus, C. (2009) Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids. Biochem. J. 420, 429-438. https://doi.org/10.1042/BJ20081932
  21. Fabbrini, E., Sullivan, S. and Klein, S. (2010) Obesity and nonalcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology 51, 679-689. https://doi.org/10.1002/hep.23280
  22. Gebhardt, R., Lerche, K. S., Götschel, F., Günther, R., Kolander, J., Teich, L., Zellmer, S., Hofmann, H.-J., Eger, K., Hecht, A. and Gaunitz, F. (2010) 4-Aminoethylaminoemodin- a novel potent inhibitor of GSK-3beta-acts as an insulin-sensitizer avoiding downstream effects of activated beta-catenin. J. Cell Mol. Med. 14, 1276-1293. https://doi.org/10.1111/j.1582-4934.2009.00701.x
  23. Hofmann, U., Maier, K., Niebel, A., Vacun, G., Reuss, M. and Mauch, K. (2008) Identification of metabolic fluxes in hepatic cells from transient $^{13}C$-labeling experiments: Part I. Experimental observations. Biotechnol. Bioeng. 100, 344-354. https://doi.org/10.1002/bit.21747
  24. Maier, K., Hofmann, U., Reuss, M. and Mauch, K. (2010) Dynamics and control of the central carbon metabolism in hepatoma cells. BMC Syst. Biol. 4, 54. https://doi.org/10.1186/1752-0509-4-54
  25. Wu, H., Southam, A. D., Hines, A. and Viant, M. R. (2008) High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 372, 204-212. https://doi.org/10.1016/j.ab.2007.10.002
  26. Maier, K., Hofmann, U., Bauer, A., Niebel, A., Vacun, G., Reuss, M. and Mauch, K. (2009) Quantification of statin effects on hepatic cholesterol synthesis by transient (13)C-flux analysis. Metab. Eng. 11, 292-309. https://doi.org/10.1016/j.ymben.2009.06.001
  27. Wiechert, W. (2001) $^{13}C$ metabolic flux analysis. Metab. Eng. 3, 195-206. https://doi.org/10.1006/mben.2001.0187
  28. Muller, C. L., Baumgartner, B., Ofenbeck, G., Schrader, B. and Sbalzarini, I. F. (2009) pCMALib: a parallel fortran 90 library for the evolution strategy with covariance matrix adaptation. pp. 1411-1418, In Proceedings of the 11th Annual conference on Genetic and evolutionary computation (GECCO '09). ACM. NewYork, USA.

Cited by

  1. RNAi in murine hepatocytes: the agony of choice—a study of the influence of lipid-based transfection reagents on hepatocyte metabolism vol.89, pp.9, 2015, https://doi.org/10.1007/s00204-015-1571-0
  2. A theoretical study of lipid accumulation in the liver—implications for nonalcoholic fatty liver disease vol.1841, pp.1, 2014, https://doi.org/10.1016/j.bbalip.2013.08.016
  3. Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD) vol.91, pp.4, 2017, https://doi.org/10.1007/s00204-016-1892-7
  4. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research vol.59, 2015, https://doi.org/10.1016/j.plipres.2015.05.002
  5. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case – control study vol.16, pp.1, 2017, https://doi.org/10.1186/s12944-017-0551-1
  6. A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models vol.124, 2014, https://doi.org/10.1016/j.biosystems.2014.07.002
  7. Autophagy protects against palmitate-induced apoptosis in hepatocytes vol.4, pp.1, 2014, https://doi.org/10.1186/2045-3701-4-28
  8. Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures vol.24, pp.1, 2013, https://doi.org/10.1016/j.copbio.2012.10.015