DOI QR코드

DOI QR Code

The Algicidal Activity of Pseudoalteromonas sp. NH-12 against the Toxic Dinoflagellate Alexandrium catenella

유독성 와편모류 Alexandrium catenella에 대한 Pseudoalteromonas sp. NH-12의 살조능

  • Jeoung, Nam-Ho (CU Leaders'College, Catholic University of Daegu) ;
  • Son, Hong-Joo (College of Natural Resources and Life Science, Pusan National University) ;
  • Jeong, Seong-Yun (Department of Biomedical Science, Catholic University of Daegu)
  • 정남호 (대구가톨릭대학교 CU 인재학부) ;
  • 손홍주 (부산대학교 생명자원과학대학) ;
  • 정성윤 (대구가톨릭대학교 의생명과학과)
  • Received : 2012.04.16
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

BACKGROUND: The aim of this study was to isolate and identify algicidal bacterium that tends to kill the toxic dinoflagellate Alexandrium catenella, and to determine the algicidal activity. METHODS AND RESULTS: Among of four algicidal bacteria isolated in this study, NH-12 isolate was the strongest algicidal activity against A. catenella. NH-12 isolate was identified on the basis of biochemical characteristics and analysis of 16S rRNA gene sequences. The isolate showed 97.67% homology with Pseudoalteromonas prydzensis ACAM $620^T$ (U85855), and was designated Pseudoalteromonas sp. NH-12. The optimal culture conditions of this isolate were $25^{\circ}C$, initial pH 8.0, and 3.0% (w/v) NaCl concentration. The algicidal activity of NH-12 was significantly increased to maximum value in the late of logarithmic phase of bacterial culture. As a result of 'cell culture insert' experiment, NH-12 is assumed to produce secondary metabolites, as an indirect attacker. When 10% culture filtrate of NH-12 was applied to A. catenella, over 99% of algal cells were destroyed within 24 h. In addition, the killing effects were increased in dose and time dependent manners. CONCLUSION(S): Taken together, our results suggest that Pseudoalteromonas sp. NH-12 could be a candidate for controlling of toxic algal blooms.

우리나라뿐만 아니라 전 세계적으로 적조 및 마비성 패독을 일으켜 문제시되고 있는 유독성 와편모류인 A. catenella 를 살조시키는 해양미생물 Pseudoalteromonas sp. NH-12를 마산만의 적조발생 해역에서 분리, 동정하고 그 특성과 살조능에 대해 연구함으로써 보다 환경 친화적인 적조 구제 기술개발의 기초 자료를 제공하고자 하였다. 적조발생 해역인 마산만의 해수에서 분리한 38개의 해양미생물 균주 중 4종의 미생물이 A. catenella 에 대해 살조능을 나타내었으며, 이중 살조능이 가장 우수한 NH-12 균주를 선별하였다. 본 균주는 API kits 및 16S rRNA gene 염기서열을 분석하여 계통분류를 행한 결과 Pseudoalteromonas 속으로 분류되었으며, 최적 배양조건은 $25^{\circ}C$, pH 8.0, 3.0% NaCl 농도였다. Pseudoalteromonas sp. NH-12의 성장 단계별 살조능은 대수증식기 후기, 정지기, 대수증식기 중기, 유도기 순으로 높게 나타났다. 살조물질은 대수증식기 중기 이후에 활발히 생산되기 시작하여 대수증식기 후기에 가장 고농도로 축적되는 것으로 판단된다. 2조 배양계를 이용한 살조 유형 조사에서 Pseudoalteromonas sp. NH-12는 격리된 상태에서도 A. catenella 를 살조시켜 '직접 공격형'이 아니라 세포외로 물질을 분비하여 살조시키는 '살조인자 분비형'으로 확인되었다. 또한 NH-12 균주 배양여과액을 5% 첨가하였을 때 36시간 후에 A. catenella 는 100% 살조되었고, 10%를 첨가한 경우 24시간 후에 99% 이상 살조되었다.

Keywords

References

  1. Cordova, J.L., Muller, I., 2002. Use of PCR and partial sequencing of the large-subunit rRNA gene to identify Alexandrium catenella (Dinophyceae) from the south of Chile, Harmful Algae 1, 343-350. https://doi.org/10.1016/S1568-9883(02)00066-5
  2. Cottrell, M.T., Suttle, C.A., 1993. Production of axenic cultures of Micromonas pusilla (Prasinophyceae) using antibiotics, J. Phycol. 29, 385-387. https://doi.org/10.1111/j.0022-3646.1993.00385.x
  3. Doucette, G.J., McGovern, E.R, Babinchak, J.A., 1999. Algicidal bacteria active against Gymnodinium breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity, J. Phycol . 35, 1447-1454. https://doi.org/10.1046/j.1529-8817.1999.3561447.x
  4. Droop, M.R., 1967. A procedure for routine purification of algae cultures with antibiotics, Brit. Phycol. Bull . 3, 295-297. https://doi.org/10.1080/00071616700650171
  5. Dunbar, J., Ticknor, L.O., Kuske, C.R., 2000. Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis, Appl. Environ. Microbiol. 66, 2943-2950. https://doi.org/10.1128/AEM.66.7.2943-2950.2000
  6. Fontana, D.A., Haug, A., 1982. Effects of sodium chloride of the plasma membrane of halotolerant Dunaliella primoecta : an electron spin resonance study, Arch. Microbiol. 131, 184-190 https://doi.org/10.1007/BF00405876
  7. Gerhardt, P., Murray, R.G., Costilow, E.R.N., Nester, E.W., Wood, W.A., Krieg, N.R., Phillips, G.B., 1981. Manual of method for general bacteriology , pp. 135-154, 1st ed. American Society for Microbiology, Washington D.C., USA.
  8. Guillard, R.R.L., Ryther, J.H., 1962. Studies of marine planktonic diatoms. 1. Cyclotella nana (HUSTEDT), and Detonula confervacea (CLEVE) GRAN, Can. J. Microbiol . 8, 229-239. https://doi.org/10.1139/m62-029
  9. Imai, I., Ishida, Y., Hata, Y., 1993. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan, Mar. Biol. 116, 527-532. https://doi.org/10.1007/BF00355470
  10. Imai, I., Ishida, Y., Sakaguichi, K., Hata, Y., 1995. algicidal marine bacteria isolated from northern Hiroshima bay, Japan, Fisher. Sci. 61, 628-636. https://doi.org/10.2331/fishsci.61.628
  11. Jeong S.Y., Ishida, K., Ito, Y., Okada, S., Murakami, M., 2003. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides, Tetra. Lett. 44, 8005-8007. https://doi.org/10.1016/j.tetlet.2003.08.115
  12. Jeong, S.Y., Park, Y.T., Lee, W.J., 2000. Isolation of marine bacteria killing red tide microalgae. III. Algicidal effects of marine bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides , J. Korean Fish. Soc. 33, 331-338.
  13. Kamikawa, R., Nagai, S., Hosoi-Tanabe, S., Itakura, S., Yamaguchi, M., Uchida, Y., Baba, T., Sako, Y., 2007. Application of real-time PCR assay for detection and quantification of Alexandrium tamarense and Alexandrium catenella cysts from marine sediments, Harmful Algae 6, 413-420. https://doi.org/10.1016/j.hal.2006.12.004
  14. Kim, C.H., 1995. Paralytic shellfish toxin profiles of dinoflagellate Alexandrium species isolated from benthic cysts in Jinhae Bay, Korea, J. Korean Fish. Soc. 28, 364-372.
  15. Kim, H.G., 1997. Recent harmful algal blooms and mitigation strategies in Korea, Ocean Res . 19, 185-192.
  16. Kim, K.Y., Kim, C.H., 2004. A molecular phylogenetic study on Korean Alexandrium catenella and A. tamarense isolates (Dinophyceae) based on the partial LSU rDNA sequence data, Hangug Haeyang Haghoeji 39, 163-171.
  17. Kim, M.C., Yu, H.S., Ok, M.S., Kim, C.H., Chang, D.S., 1999. The activities and characteristics of algicidal bacteria in Chindong Bay, J. Korean Fish. Soc. 32, 359-367.
  18. Kim, P.G., Park, M.E., Sung, K.Y., Jang, Y.N., 2006. A study of removal property of harmful algal blooms by Hwangto and oriental mineral medicines, J. Miner. Soc. Korea 19, 277-289.
  19. Kim, Y.S., Jeong, S.Y., Lee, S.J., Lee, W.J., 2009. Isolation and characteristics of Brachybacterium sp. SY-97 killing the harmful dinoflagellate Cochlodinium polykrikoides, J. Environ. Sci. 18, 435-443. https://doi.org/10.5322/JES.2009.18.4.435
  20. Kwak, S.K., Choi, M.Y., Cho, K.J., 2001. Distribution and occurrence frequency of red-tide causing flagellates in the Masan-Jinhae Bay, Algae 16, 315-323.
  21. Lee, H.O., Lee, N.W., Katano, T., Han, M.S., 2006. Growth characteristics for toxic marine dinoflagellate Alexandrium catenella isolated from Jinhae Bay, Korea, Korean J. Environ. Biol. 24, 147-154.
  22. Lee, S.O., Kato, J., Takiguchi, N., Kuroda, A., Ikeda, T., Mitsutani, A., Ohtake, H., 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28, Appl. Environ. Microbiol. 66, 4334-4339. https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  23. Lovejoy, C., Bowman, J.P., Hallegraeff, G.M., 1998. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella , Gymnodinium, and Heterosigma, Appl. Environ. Microbiol. 64, 2806-2813.
  24. MacFaddin, J.F., 1980. Biochemical tests for identification of medical bacteria , pp. 36-308, 2nd ed. Williams and Wilkins Co., Baltimore, USA.
  25. Mayali, X., Azam, F., 2004. Algicidal bacteria in the sea and their impact on algal blooms, J. Eukaryot. Microbiol. 51, 139-144. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x
  26. Mitsutani, A., Yamasaki, I., Kitaguchi, H., Kato, J., Ueno, S., Ishida, Y., 2001. Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis, Phycologia 40, 286-291. https://doi.org/10.2216/i0031-8884-40-3-286.1
  27. Park, Y.T., Park, J.B., Chung, S.Y., Song, B.C., Lim, W.A., Kim, C.H., Lee, W.J., 1998. Isolation of marine bacteria killing red tide microalgae, 1. Isolation and algicidal properties of Micrococcus sp. LG possessing killing activity for harmful dinoflagellate, Cochlodinium polykrikoides, Bull. Korean Fish. Soc. 31, 767-773.
  28. Porter, K.G., Feig, Y.S., 1980. The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr. 25, 943-848. https://doi.org/10.4319/lo.1980.25.5.0943
  29. Sakata, T., Fujita, Y., Yasumoto, H., 1991. Plaque formation by algicidal Saprospira sp. a lawn of Chaetoceros ceratosporum, Nippon Suisan Gakkaishi 56, 1147-1152.
  30. Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning, a laboratory manual , pp. 25-28, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, N.Y., USA.
  31. Skerratt, J.H., Bowman, J.P., Hallegraeff, G.M., James, S., Nichols, P.D., 2002. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary, Mar. Ecol. Prog. Ser. 244, 1-15. https://doi.org/10.3354/meps244001
  32. Sommer, H., Meyer, K.F., 1937. Paralytic shellfish poisoning, Arch. Path. 24, 560-598.
  33. Su, J.Q., Yang, X.R., Zheng, T.L., Tian, Y., Jiao, N.Z., Cai, L.Z., Hong, H.S., 2007a. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense, Harmful Algae 6, 799-810. https://doi.org/10.1016/j.hal.2007.04.004
  34. Su, J.Q., Yang, X.R., Zheng, T.L., Hong, H.S., 2007b. An efficient method to obtain axenic cultures of Alexandrium tamarense -a PSP-producing dinoflagellate, J. Microbiol. Meth. 69, 425-430. https://doi.org/10.1016/j.mimet.2006.07.005
  35. Su, J.Q., Yang, X.R., Zhou, Y.Y., Zheng, T.L., 2011. Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae), Biol. Control 56, 132-138. https://doi.org/10.1016/j.biocontrol.2010.10.004
  36. Taga, N., 1968. Some ecological aspects of marine bacteria in the KuroShio current, Bull. Misaki. Mar. Biol. Inst. Kyoto Univ. 12, 65-76.
  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  38. Wang, B.X., Yang, X.R., Lu, J.L., Zhou, Y.A., Su, J.Q., Tian, Y., Zhang, J., Wang, G.H., Zheng, T.L., 2012. A marine bacterium producing protein with algicidal activity against Alexandrium tamarense, Harmful Algae 13, 83-88. https://doi.org/10.1016/j.hal.2011.10.006
  39. Wang, X.L., Gong, L.Y., Liang, S.K., Han, X.R., Zhu, C.J., Li, Y.B., 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa, Harmful Algae 4, 433-443. https://doi.org/10.1016/j.hal.2004.06.001
  40. Yoshinaga, I., Kawai, T., Ishida, Y., 1997. Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref., Japan, Fisher. Sci. 63, 94-98. https://doi.org/10.2331/fishsci.63.94
  41. Yoshinaga, I., Kawai, T., Takeuchi, T., Ishida, Y., 1995. Distribution and fluctuation of bacteria inhibiting the growth of a marine red tide phytoplankton Gymnodinium mikimotoi in Tanabe Bay (Wakayama Pref., Japan), Fisher. Sci. 61, 780-786. https://doi.org/10.2331/fishsci.61.780
  42. Yoshinaga, I., Kim, M.C., Katanozaka, N., Imai, I., Uchia, A., Ishia, Y., 1998. Population structure of algicidal marine bacteria targeting Heterosigma akashiwo (Raphidophyceae) through restriction fragment length polymorphism analysis of the bacterial 16S ribosomal RNA genes, during H. akashiwo red tide, Mar. Ecol. Prog. Ser. 170, 33-44. https://doi.org/10.3354/meps170033

Cited by

  1. Extraction of anti-microalgal material from Laminaria spp. and effect of oligo-alginate derivatives on membrane potential vol.13, pp.12, 2012, https://doi.org/10.5762/KAIS.2012.13.12.6196
  2. Production of antibodies for saxitoxin analysis and sensitivity analysis of anti-saxitoxin antiserum vol.13, pp.12, 2012, https://doi.org/10.5762/KAIS.2012.13.12.6208
  3. The Algicidal Activity of Arthrobacter sp. NH-3 and its Algicide against Alexandrium catenella and other Harmful Algal Bloom Species vol.34, pp.2, 2015, https://doi.org/10.5338/KJEA.2015.34.2.12