DOI QR코드

DOI QR Code

Assessment of Biological Toxicity Monitoring in Water Using Sulfur Oxidizing Bacteria

하천수의 생태독성을 파악하기 위한 황산화미생물의 이용가능성 평가

  • Kang, Woo-Chang (Department of Biological Environment, Kangwon National University) ;
  • Oh, Sang-Eun (Department of Biological Environment, Kangwon National University)
  • 강우창 (강원대학교 바이오자원환경학과) ;
  • 오상은 (강원대학교 바이오자원환경학과)
  • Received : 2012.04.11
  • Accepted : 2012.06.21
  • Published : 2012.06.30

Abstract

BACKGROUND: Inappropriate discharge of wastewaters and industrial effluents are becoming detrimental to the aquatic environment. The presence of toxic substances on wastewaters can be detected by physicochemical and biological methods. However, physicochemical methods do not give any information about biological toxicity. Therefore, in this study we tried to detect the presence of toxic substance on waters using sulfur-oxidizing bacteria (SOB) as a bioassay. MATERIALS AND RESULTS: The SOB biosensor was first stabilized using synthetic stream water and operated in both continuous and semi-continuous mode. When the SOB biosensor was operated in continuous mode, the effluent electrical conductivity (EC) stabilized at~1.72 dS/m. While in the case of semi-continuous, the EC stabilized at~0.6 dS/m. The SOB system was also operated at different reaction times to ascertain the shortest reaction time for monitoring the toxicity. Finally, the SOB biosensor was fed with nitrite as toxic substance. When 5 mg/L of nitrite was added to the SOB system, the EC decreased immediately. However, the EC recovered after few cycle. CONCLUSION: This study shows that the SOB biosensor can be used as warning system to protect aquatic environment from hazardous materials. Although SOB biosensor can not give specific information about the toxic substances, it can assess whether the water is toxic or not.

일반적으로 실제 하천의 EC 값은 일정하게 유지가 된다. 연속식, 반연속식 운전으로 실험한 결과 정상상태(steady state)를 보였다. 연속운전의 경우 유출수의 EC 값은 1.7 dS/m로 일정하게 유지되었으며(유입 EC = 0.1 dS/m) 반연속식운전의 경우 새로운 유입수가 유입됨으로 인해 초기 EC는 약 0.1 dS/m이고 미생물이 황을 산화함에 따라 황산염 이온이 생성되고 EC가 증가하여 30분 후 EC는 약 0.6 dS/m로 측정되었고 장시간 운전하여도 일정한 트랜드의 안정적인 값이 측정되었다. ${NO_2}^{-}-N$가 주입되면서 미생물이 저해를 받아 EC가 감소하는 경향을 보였으며 이를 통해 독성물질 주입여부를 판별할 수 있었다. 독성이 없는 유입수를 다시 유입시켰을 경우 약 4~5시간 후 반응조 내의 미생물이 원상태를 회복하여 유입 전 EC의 값이 다시 측정되었다. 황을 이용한 독성모니터링방법은 다른 여러 조건의 실험을 통해 문제점 파악 및 보완이 필요하지만 연속식 운전, 반연속식 운전 2가지 방법을 통해 독성물질을 신속하게 탐지할 수 있을 것으로 판단된다.

Keywords

References

  1. Kim, B.S., Park, Y.K., Park, K.H., Kim, J.K., Shin, J.S., Kim, J.H., Yoon, S.M., Ahn, Y.J., 2006. Selection of optimal culture media for developing standard ecological toxicity test methods using korean freshwater cladocera, The Korean J. Pesticide Sci. 10, 189-195.
  2. Bozeman, J., Koopman, B., Bitton, G., 1989. Toxicity testing using immobilized algae, Aquatic Toxicol . 14, 345-352. https://doi.org/10.1016/0166-445X(89)90032-5
  3. Gu, M.B., Gil, G.C., 2001. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity, Biosens. Bioelectron. 16, 661-666. https://doi.org/10.1016/S0956-5663(01)00195-6
  4. Hernando, M.D., Fernandez-alba, A.R., Tauler, R., Barcelo, D., 2005. Toxicity assays applied to wastewater treatment, Talanta . 65, 358-366. https://doi.org/10.1016/j.talanta.2004.07.012
  5. Kim, K.Y., Kim, K.R., Lee, S.I., 2010. Acute toxicity test for heavy metals using water fleas, J. of Korean Society of Water Science and Technology. 18, 37-47.
  6. Lovley, D.R., Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol . 54, 1472-1480.
  7. Oh, S.E., 2010. A new methodology of measuring water toxicity using sulfur oxidizing bacteria, J. of KSEE , 32, 555-562.
  8. Oh, S.E., Hassan, S.H.A., VanGinkel, S.W., 2011. A novel biosensor for detecting toxicity in water using sulfur-oxidizing bacteria, Sensor Actuat B-Chemical . 154, 17-21. https://doi.org/10.1016/j.snb.2010.01.052
  9. Sorokin, D.Y., Kuenen, J.G., 2005. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes, FEMS Microbiol. Reviews . 29, 685-702. https://doi.org/10.1016/j.femsre.2004.10.005
  10. Strigui, N., Koutsospyros, A., Christodoulatos, C., 2010. Tungsten speciation and toxicity: Acute toxicity of mono-and poly-tungstates to fish, Ecotox. Environ. Safe . 73, 164-171. https://doi.org/10.1016/j.ecoenv.2009.08.016
  11. Van Ginkel, S.W., Hassan, S.H.A., Oh, S.E., 2010. Detecting endocrine disrupting compounds in water using sulfur oxidizing bacteria, Chemosphere. 81, 294-297. https://doi.org/10.1016/j.chemosphere.2010.05.056
  12. Van Wezel, A., Mons, M., Van Delft, W., 2010. New methods to monitor emerging chemicals in the drinking water production chain, J. Environ. Monitor . 12, 80-89. https://doi.org/10.1039/b912979k
  13. Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A., Heringa, M., 2011. Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?, Anal. Bioanal. Chem. 400, 915-929. https://doi.org/10.1007/s00216-010-4372-6
  14. Yoon, S.J., Lee, S.K., Park, H.O., 2008. Development of continuous water quality monitoring system using the daphnid Daphnia sp., J. Korean Society On Water Quality . 24, 36-43.