References
- Choi, J. K., and M. S. Kang, 2000. (Theory of) Neural network and application to water resources. Jounal of Korean National Committee on Irrigation and Drainage 7(2): 248-258 (in Korean).
- Huynh, N. P. and S. Sureerattanan, 2000. Neural networks for filtering and forecasting of daily and monthly streamflows. Water Resources Publications, LLC, WEESHE, Hydrologic Modeling, pp. 203-218.
- Kang, M. S., and S. W. Park, 2001. Forecasting long-term streamflow from a small watershed using artificial neural network. Journal of the Korean Society of Agricultural Engineers 43(2): 69-77 (in Korean).
- Kang, M. S., 2002. Development of total maximum daily loads simulation system using artificial neural networks for satellite data analysis and nonpoint source pollution models. Ph.D. Dissertation, Seoul National University (in Korean).
- Kang, M. S., and S. W. Park, 2003. Short-term flood forecasting using artificial neural networks. Journal of the Korean Society of Agricultural Engineers 45(2): 45-57 (in Korean).
- Kang, M. S., M. G. Kang, S. W. Park, J. J. Lee, and K. H. Yoo, 2006. Application of grey model and artificial neural networks to flood forecasting. Journal of American Water Resources Association (JAWRA) 42(2): 473-486. https://doi.org/10.1111/j.1752-1688.2006.tb03851.x
- Kang, M. S., J. P. Cho, J. A. Chun, and S. W. Park, 2009. Assessment of cell based pollutant loadings in an intensive agricultural watershed. Journal of the Korean Society of Agricultural Engineers 51(5): 87-94 (in Korean). https://doi.org/10.5389/KSAE.2009.51.5.087
- Kang, M. S.. 2010. Development of improved farming methods to reduce agricultural non-point source pollution. Korea Rural Community Corporation Rural Research Institute (in Korea).
- Kim, S. J., S. J. Kim, C. G. Yoon, H. J. Kwon, and G. A. Park, 2003. Development and application of paddy storage estimation model during storm periods. Journal of Korea Water Resources Association 36(6): 901-910 (in Korean). https://doi.org/10.3741/JKWRA.2003.36.6.901
- Kim, T. S. K. H. Han, and J. H. Heo, 2008. Calibration of real-time rainfall data using artificial neural network. Journal of Korea Water Resources Association 41(10): 1059-1065 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.10.1059
- Lee, E. J., M. S. Kang, J. A. Park, J. Y Choi, and S. W. Park, 2010. Estimation of future reference corp evapotranspiration using artificial neural networks. Journal of the Korean Society of Agricultural Engineers 52(5): 1-9 (in Korean). https://doi.org/10.5389/KSAE.2010.52.5.001
- Nash, J. E. and J. V. Sutcliffe, 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology 10: 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
- Odhiambo, L. O., R. E. Yoder, D. C. Yoder, and J. W. Hines, 2001. Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans. of ASAE 44: 1625-1633.
- Oh, J. W., J. H. Park, and Y. K. Kim, 2008. Missing hydrological data estimation using neural network and real time data reconciliation. Journal of Korea Water Resources Association 41(10): 1059-1065 (in Korean). https://doi.org/10.3741/JKWRA.2008.41.10.1059
- Sajikumar, N. and B. S. Thandaveswara, 1999. A nonlinear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216: 32-55. https://doi.org/10.1016/S0022-1694(98)00273-X
- Sudheer, K. P., A. K. Gosain, and K. S. Ramasastri, 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering 129(3): 214-221. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(214)
- Zanetti, S. S., E. F. Sousa, V. P. S. Oliveira, F. T. Almeida, and S. Bernardo, 2007. Estimation evapotranspiration using neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering 133(2): 83-89. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:2(83)