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Abstract. In this article we introduce the class of I-convergent double sequences of fuzzy

real numbers. We have studied different properties like solidness, symmetricity, monotone,

sequence algebra etc. We prove that the class of I-convergent double sequences of fuzzy

real numbers is a complete metric spaces.

1. Introduction

The concept of fuzzy sets was first introduced by L. A. Zadeh in the year 1965.
It has a wide range of applications in almost all the branches of science, where
mathematics is used. The notion of fuzzyness are used by the researchers in Cyber-
netics, Artficail Intelligence, Expert Systems and fuzzy control, Pattern recognition,
Operations research, Decision making, Image analysis, Projectiles, Probability the-
ory, Agriculture, Weather forecasting etc. The fuzzy analogue of all the subjects of
mathematical science has been investigated. It attracted many workers on sequence
spaces and summability theory to introduce different types of fuzzy sequence spaces
and study their different properties. Our studies are based on the linear spaces of
sequences of fuzzy real numbers which are very important for the higher level studies
in Quantum mechanics, Partical physics, Statistical mechanics etc. Different classes
of sequences of fuzzy numbers have been investigated by Altin, Et and Basarir [1],
Altin, Mursaleen and Altinok [2], Altinok, Colak and Et [3], Colak, Altinok and Et
[6], Tripathy and Baruah ([15], [16]), Tripathy and Borgohain [17], Tripathy and
Dutta ([19], [20]) and many others. The present work is motivated by the works
on I-convergent sequences by Kostyrko, S̆alát and Wilczyñski [8], Tripathy and
Hazarika ([22], [23], [24]), Tripathy and Mahanta [25], Tripathy and Tripathy [28]
and others.
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Throughout, a double sequence is denoted by A =< Xnk >, a double infinite
array of elements Xnk, where each Xnk is a fuzzy real number.

The notion of sequence spaces has been investigated from different aspects by
Tripathy, Choudhary and Sarma [18], Tripathy and Dutta [21] and others in the
recent years. The initial works on double sequences is found in Bromwich [5]. Later
on it was studied by Basarir and Sonalcan [4], Hardy [7], Moricz [9], Moricz and
Rhoades [10], Tripathy [13], Tripathy and Dutta ([19], [20]) Tripathy and Tripathy
[28] and many others. Hardy [7] introduced the notion of regular convergence for
double sequences.

The notion of I-convergence of real valued sequence was studied at the initial
stage by Kostyrko, S̆alát and Wilczyñski [8], which generalizes and unifies differ-
ent notions of convergence of sequences. The notion of I-convergence of double
sequences was introduced by Tripathy and Tripathy [28].

2. Definitions and background

Definition 2.1. Let X be a non-empty set, then a non-void class I ⊆ 2X (power
set of X) is called an ideal if I is additive (i.e. A,B ∈ I ⇒ A∪B ∈ I) and hereditary
(i.e. A ∈ I and B ⊆ A ⇒ B ∈ I).

Definition 2.2. An ideal I ⊆ 2X is said to be non-trivial if I ̸= 2X . A non-trivial
ideal I is said to be admissible if I contains every finite subset of N . A non trivial
ideal I is said to be maximal if there does not exist any non trivial ideal J ̸= I
containing I as a subset.

Definition 2.3. Let X be a non-empty set, then a non-void class F ⊆ 2X is said
to be a filter in X if ∅ /∈ F;A,B ∈ F ⇒ A ∩B ∈ F and A ∈ F, A ⊆ B ⇒ B ∈ F.

For any ideal I, there is a filter F(I) corresponding to I, given by

F(I) = {K ⊆ N : N\K ∈ I}.

Example 2.1. (a) Let I = If , class of all finite subsets of N . Then If is a non-
trivial admissible ideal of 2N .

(b) Let A ⊂ N . If δ(A) = lim
n→∞

1
n

n∑
k=1

χA(k) exists, then the class Iδ of all A ⊂ N

with δ(A) = 0 forms a non-trivial admissible ideal of 2N .

This is known as asymptotic density of A and the type of convergence related to
this notion is known as statistical convergence. Different classes of statistically con-
vergent sequence spaces have been investigated and related with characterization of
matrix classes by Rath and Tripathy [11], Tripathy ([12], [13], [14]), Tripathy and
Sen ([26], [27]) and many others.

(c) Let A ⊂ N and sn =
n∑

k=1

1
k , for all n ∈ N . If d(A) = lim

n→∞
1
sn

n∑
k=1

χA(k)
k exists,

then the class Id of all A ⊂ N with d(A) = 0 forms a non-trivial admissible ideal.
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Definition 2.4. A subset E of N ×N is said to have density ρ(E), if

ρ(E) =
lim

p, q → ∞

p∑
n=1

q∑
k=1

χE(n, k) exists,

where χE is the characteristic function of E. This is known as the asymptotic
density of E.

Definition 2.5. Let p, q ≥ 0 and s, t ≥ 1, be integers. Let D ⊆ N × N and
D(p+1, p+t; q+1, q+s) = card {(n, k) ∈ D : p+1 ≤ n ≤ p+t and q+1 ≤ k ≤ q+s}.
Put βt,s =

lim inf

p,q→∞
D(p+1, p+t; q+1, q+s) and βt,s = lim sup

p,q→∞
D(p+1, p+t; q+1, q+s).

Let u(D) = lim
t,s→∞

βt,s

ts exists and u(D) = lim
t,s→∞

βt,s

ts exists. If u(D) = u(D) = u(D),

say. Then u(D) is called the uniform density of D.

Definition 2.6. Let sn =
n∑

k=1

1
k . Then a subset E of N × N is said to have

logarithmic density ρ∗(E) if

ρ∗(E) =
lim

p, q → ∞
1

spsq

p∑
n=1

q∑
k=1

χE(n, k)

nk
exists.

Since sn =
n∑

k=1

1
k = log n + γ + ⃝

(
1
n

)
, where γ is the Euler’s constant, the above

expression is equivalent to the following:

ρ∗(E) =
lim

p, q → ∞
1

log p

1

log q

p∑
n=1

q∑
k=1

χE(n, k)

nk
exists.

Let D denote the set of all closed and bounded intervals X = [a1, a2] on the real
line R. For X = [a1, a2] ∈ D and Y = [b1, b2] ∈ D, define d(X,Y ) by

d(X,Y ) = max(|a1 − b1|, |a2 − b2|).

It is known that (D, d) is a complete metric space.

Definition 2.7. A fuzzy real number X is a fuzzy set on R, i.e. a mapping
X : R → L(= [0, 1]) associating each real number t with its grade of membership
X(t).

Definition 2.8. The α-level set of a fuzzy real number X, 0 < α ≤ 1 denoted by
Xα is defined as Xα = {t ∈ R : X(t) ≥ α}. The 0-level set is the closure of the
strong 0-cut, i.e. 0-level set = cl{t ∈ R : X(t) > 0}.

Definition 2.9. A fuzzy real number X is called convex, if X(t) ≥ X(s) ∧X(r) =
min(X(s), X(r)), where s < t < r. If there exists t0 ∈ R such that X(t0) = 1, then
the fuzzy real number X is called normal. A fuzzy real number X is said to be
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upper semi-continuous if for each ε > 0, X−1([0, a+ ε)), for all a ∈ L is open in the
usual topology of R. The set of all upper semi-continuous, normal, convex fuzzy
number is denoted by L(R).

Definition 2.10. The absolute value |X| of X ∈ L(R) is defined by

|X|(t) =

{
max{X(t), X(−t)}, if t ≥ 0;

0, if t < 0.

Let d̄ : L(R)× L(R) → R be defined by

d̄(X,Y ) =
sup

0 ≤ α ≤ 1
d(Xα, Y α).

Then d̄ defines a metric on L(R).

The additive identity and multiplicative identity in L(R) are denoted by 0̄ and
1̄ respectively.

Definition 2.11. A sequence (Xn) of fuzzy real numbers is said to be convergent
to the fuzzy real number X0, if for every ε > 0, there exists n0 ∈ N such that
d̄(Xn, X0) < ε for all n ≥ n0.

Definition 2.12. A fuzzy real-valued sequence space EF is said to be solid if
(Yn) ∈ EF whenever (Xn) ∈ EF and |Yn| ≤ |Xn|, for all n ∈ N .

Definition 2.13. Let K = {(ni, ki) : i ∈ N ; n1 < n2 < n3 < ... and
k1 < k2 < k3 < ....} ⊆ N × N and EF be a double sequence space. A K-step
space of EF is a sequence space λE

K = {< Xniki >∈ 2w
F :< Xnk >∈ EF }.

Definition 2.14. A canonical pre-image of a sequence < Xniki >∈ EF is a se-
quence < Ynk > defined as follows:

Ynk =

{
Xnk, if (n, k) ∈ K,

0, otherwise.

A canonical pre-image of a step space λE
K is a set of canonical pre-images of all

elements in λE
K .

Definition 2.15. A sequence space EF is said to be monotone if it contains the
canonical pre-images of all its step spaces.

Definition 2.16. A double sequence space EF is said to be symmetric if
< Xn,k >∈ E implies < Xπ(n,k) >∈ E, where π is a permutation of N × N .

Definition 2.17. A sequence X = (Xn) of fuzzy numbers is said to be I-
convergent if there exists a fuzzy number X0 such that for all ε > 0, the set
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{n ∈ N : d̄(Xn, X0) ≥ ε} ∈ I. We write I − limXn = X0.

Definition 2.18. A sequence (Xn) of fuzzy numbers is said to be I∗-convergent
to X0 (I∗ − limXn = X0) if there is a set {n1 < n2 < ......} ∈ F(I) such that
lim

i→∞Xni = X0.

Definition 2.19. A sequence (Xn) of fuzzy numbers is said to be I-bounded if
there exists a real number µ such that the set {n ∈ N : d̄(Xn, 0̄) > µ} ∈ I.

If I = If , then If convergence coincides with the usual convergence of sequences
of fuzzy numbers. If I = Id(Iδ), then Id(Iδ) convergence coincides with statistical
convergence (logarithmic convergence) of sequences of fuzzy numbers. If I = Iu, Iu
convergence is said to be uniform convergence of sequences of fuzzy numbers.

Let cIF ,
(
cI0
)
F
and

(
ℓI∞

)
F
denote the classes of fuzzy real-valued I-convergent,

I-null and I-bounded sequences respectively.
It is clear from the definitions that

(
cI0
)
F
⊂ cIF ⊂

(
ℓI∞

)
F
and the inclusions are

proper.
It can be easily shown that (ℓ∞)F is complete with respect to the metric ρ

defined by

ρ(X,Y ) =
sup

n
d̄(Xn, Yn), where X = (Xn), Y = (Yn) ∈ (ℓ∞)F .

Remark 2.1. A sequence space EF is solid implies EF is monotone.

Lemma 2.1. If I ⊂ 2N is a maximal ideal, then for each A ⊂ N we have either
A ∈ I or N\A ∈ I. (see for instance lemma 5.1 [8]).

3. I-convergent double sequences of fuzzy numbers

The notion of I-convergence of double sequences was introduced by Tripathy
and Tripathy [28]. In this section we introduce some definition of I-convergence of
sequences of fuzzy numbers. In order to distinguish between the ideals of 2N and
2N×N , we shall denote the ideals of 2N by I and that of 2N×N by I2.

Definition 3.1. Let I2 be an ideal of 2N×N . A double sequence < Xnk > of fuzzy
numbers is said to be I-convergent to X0 in Pringsheim’s sense if for every ε > 0,

{(n, k) ∈ N ×N : d(Xnk, X0) ≥ ε} ∈ I2.

For X0 = 0̄, it is called I-null in Pringsheim’s sense.

Definition 3.2. Let I2 be an ideal of 2N×N and I be an ideal of 2N . A double
sequence < Xnk > of fuzzy real numbers is said to be regularly I-convergent to a
number X0 if it is I-convergent in Pringsheim’s sense to X0 and for every ε > 0,
the followings hold.
For each k ∈ N , there exists Lk ∈ L(R) such that {n ∈ N : d(Xnk, Lk) ≥ ε} ∈ I,
and for each n ∈ N , there exists Mn ∈ L(R) such that {k ∈ N : d(Xnk,Mn) ≥ ε} ∈
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I.
When X0 = Lk = Ln = 0, for all n, k ∈ N the sequence < Xnk > is said to be
regularly I-null.

Definition 3.3. A double sequence < Xnk > of fuzzy real numbers is said to
be I-Cauchy if for every ε > 0, there exist s = s(ε), t = t(ε) ∈ N such that
{(n, k) ∈ N ×N : d(Xnk, Xst) ≥ ε} ∈ I2.

Definition 3.4. A double sequence < Xnk > of fuzzy real numbers is said to be I-
bounded if there exists a real number K > 0 such that {(n, k) ∈ N×N : d(Xnk, 0) ≥
K} ∈ I2.

Throughout the article
(
2ℓ

I
∞
)
F
, 2c

I
F ,

(
2c

I
0

)
F
,
(
2c

I
)R
F

and
(
2c

I
0

)R
F

will denote
the classes of I-bounded, I-convergent in Pringsheim’s sense, I-null in Pringsheim’s
sense, regularly I-convergent and regularly I-null double sequences of fuzzy numbers
respectively.

Also we define
(
2c

I
)B
F
= 2c

I
F ∩ (2ℓ∞)F ;

(
2c

I
0

)B
F
=

(
2c

I
0

)
F
∩ (2ℓ∞)F(

2c
I
)BR

F
=

(
2c

I
)R
F
∩ (2ℓ∞)F ;

(
2c

I
0

)BR

F
=

(
2c

I
0

)R
F
∩ (2ℓ∞)F .

Definition 3.5. Let X =< Xnk > and Y =< Ynk > be two double sequences.
Then we say that Xnk = Ynk for almost all n and k relative to I2 (in short a.a.n &
k r. I2) if

{(n, k) ∈ N ×N : Xnk ̸= Ynk} ∈ I2.

4. Main results

Theorem 4.1. The classes of sequences
(
2c

I
)B
F
,
(
2c

I
)BR

F
,
(
2c

I
0

)B
F
,
(
2c

I
0

)BR

F
are

complete metric spaces with respect to the metric

ρ(X,Y ) =
sup

n, k
d(Xnk, Ynk),

where X =< Xnk >,Y =< Ynk >.

Proof. We prove the result for the class of sequences
(
2c

I
)B
F
. Let (Xi) be a Cauchy

sequence in
(
2c

I
)B
F
. Then Xi → X in (2ℓ∞)F . Let I− limXi

nk = Li for each i ∈ N .
We are to show that
(i) (Li) is convergent, say to L.
(ii) I − limXnk = L.
Since (Xi) is Cauchy, so for each ε > 0, there exists n0 ∈ N such that

ρ(Xi, Xj) <
ε

3
for all i, j ≥ n0.

Now there exist sets Ei and Ej in I2 such that

Ei =
{
(n, k) : d(Xi

nk, Li) ≥
ε

3

}
,



On I-Convergent Double Sequences of Fuzzy Real Numbers 195

Ej =
{
(n, k) : d(Xj

nk, Lj) ≥
ε

3

}
.

Consider i, j ≥ n0 and (n, k) /∈ Ei ∩ Ej . Then

d(Li, Lj) ≤ d(Xi
nk, Li) + d(Xi

nk, X
j
nk) + d(Xj

nk, Lj)

< ε.

Thus (Li) is a Cauchy sequence of fuzzy real numbers, so it is convergent.

Let lim
j→∞Lj = L. Let η > 0 be given, then we can find m0 such that

d(Lj , L) <
η

3
for all j > m0.

Also Xi → X as i → ∞. Thus ρ(Xi, X) < η
3 for all i > m0.

Since < Xj
nk > is I-convergent to Lj so there exists D ∈ I2 such that for each

(n, k) /∈ D,

d(Xi
nk, Lj) <

η

3
.

Without loss of generality let j > m0. Then for all (n, k) /∈ D,

d(Xnk, L) ≤ d(Xnk, X
j
nk) + d(Xj

nk, Lj) + d(Lj , L) < η.

Hence < Xnk > is I-convergent to L. 2

Theorem 4.2. The classes of sequences
(
2c

I
0

)
F
,
(
2c

I
0

)B
F
,
(
2c

I
0

)R
F
,
(
2c

I
0

)BR

F
and(

2ℓ
I
∞
)
F
are solid and hence monotone.

Proof. We prove the result for the class of sequences
(
2ℓ

I
∞
)
F
. For the other classes

of sequences the proof will follow similarly. Let < Xnk >∈
(
2ℓ

I
∞
)
F

and < Ynk >
be such that |Ynk| ≤ |Xnk| for all n, k ∈ N . Then for a given µ > 0, A = {(n, k) ∈
N ×N : d(Xnk, 0) ≥ µ} ∈ I2.

Now B = {(n, k) ∈ N × N : d(Ynk, 0) ≥ µ} ⊆ A. Thus B ∈ I2 and so
< Ynk >∈

(
2ℓ

I
∞
)
F
. The class of sequences 2ℓ

I
∞)F is monotone follows by Remark

2.1. 2

Property 4.3. Let I be not maximal, then the classes of sequences 2c
I
F ,

(
2c

I
)B
F
,(

2c
I
)R
F
and

(
2c

I
)BR

F
are not monotone and hence not solid.

To show the above property consider the following example.

Example 4.1. Consider the space 2c
I
F . Let I2 be the ideal of those subsets E of

N ×N such that

ρ∗(E) = lim
p,q→∞

1

spsq

p∑
n=1

q∑
k=1

χE(p, q) = 0.
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For all n, k ∈ N define the fuzzy sequence < Xnk > by

Xnk(t) =


t, for 0 ≤ t ≤ 1,

−t+ 2, for 1 ≤ t ≤ 2,

0, otherwise.

Then the sequence < Xnk > is logarithmically convergent. Let J be a subset of
N ×N such that J = {(n, k) : n > k}.

Let the sequence < Ynk > be defined by

Ynk =

{
Xnk, if (n, k) ∈ J,

0, otherwise.

Then < Ynk > belongs to the canonical pre-image of J-step space of (2c
I)F , but

< Ynk >/∈ (2c
I)F . Thus (2c

I)F is not monotone and hence not solid.

Similarly it can be shown that the other classes of sequences are not monotone
and hence are not solid.

Property 4.4. If I2 is neither maximal nor I2 = (I2)f (ideal of finite subsets of

N × N), then 2c
I
F ,

(
2c

I
)B
F
,
(
2c

I
)R
F
,
(
2c

I
)BR

F
,
(
2c

I
0

)
F
,
(
2c

I
0

)B
F
,
(
2c

I
0

)R
F

and
(
2c

I
0

)BR

F
are not symmetric.

To prove the result consider the following example.

Example 4.2. Consider the classes of sequences (2c
I)F . Let I2 be the ideal of

those subsets E of N ×N such that

ρ(E) = lim
p,q→∞

1

pq

p∑
n=1

q∑
k=1

χE(p, q) = 0.

Consider the fuzzy sequence < Xnk > defined by

X1k = 0

and

Xnk(t) =


t− 1, for 1 ≤ t ≤ 2,

−t+ 3, for 2 ≤ t ≤ 3,

0, otherwise,

for other values of n ∈ N . Then < Xnk >∈ (2c
I)F .

Let < Ynk > be a rearrangement of < Xnk > defined as follows:
For n even and all k ∈ N ,

Ynk(t) =


t− 1, for 1 ≤ t ≤ 2,

−t+ 3, for 2 ≤ t ≤ 3,

0, otherwise.
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and Ynk = 0, otherwise.
Then < Ynk >/∈ (2c

I)F . Hence the space (2c
I)F is not symmetric.

Similarly one can construct examples for the other classes of sequences.

Property 4.5. If I2 is neither maximal nor I2 = (I2)f , then
(
2ℓ

I
∞
)
F

is not sym-
metric.

Proof. To establish the result consider the following example.

Example 4.3. Let I2 be the ideal of those subsets E of N ×N such that

ρ(E) = lim
p,q→∞

1

pq

p∑
n=1

q∑
k=1

χE(p, q) = 0.

Let the sequences of fuzzy numbers < Xnk > be defined by
For n even and k = i2, i ∈ N,

Xnk(t) =


t, for 0 ≤ t ≤ 1,

−ti−1 + 1 + i−1, for 1 ≤ t ≤ n,

0, otherwise.

and Xnk = 0, otherwise.
Then < Xnk >∈

(
2ℓ

I
∞
)
F
.

Let < Ynk > be a rearrangement of < Xnk > defined as follows:
For k odd and all n ∈ N ,

Ynk(t) =


t, for 0 ≤ t ≤ 1,

−2t(k + 1)−1 + 1 + 2(k + 1)−1, for 1 ≤ t ≤ n,

0, otherwise.

Then < Ynk >/∈
(
2ℓ

I
∞
)
F
. Hence

(
2ℓ

I
∞
)
F
is not symmetric. 2

Theorem 4.6. The classes of sequences 2c
I
F ,

(
2c

I
)B
F
,
(
2c

I
)R
F
,
(
2c

I
)BR

F
,
(
2c

I
0

)
F
,(

2c
I
0

)B
F
,
(
2c

I
0

)R
F
and

(
2c

I
0

)BR

F
are sequence algebra.

Proof. Consider the classes of sequences
(
2c

I
0

)
F
. Let < Xnk >, < Ynk >∈

(
2c

I
0

)
F
.

Then corresponding to the ideal I2 there exist a filter F(I) such that

A = {(n, k) : d(Xnk, 0) < ε} ∈ F(I2),

B = {(n, k) : d(Ynk, 0) < ε} ∈ F(I2).

Let [Xnk]
α = [a, b], [Ynk]

α = [c, d], then

[XnkYnk]
α = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] = [ad, bc](suppose).
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Now d(XnkYnk, 0) = max{|ad|, |bc|}, d(Xnk, 0) = max{|a|, |b|}, d(Ynk, 0) =
max{|c|, |d|}.

Now for all values of d(XnkYnk, 0), d(Xnk, 0), d(Ynk, 0) we have

d(XnkYnk, 0) ≤ d(Xnk, 0)d(Ynk, 0)

Hence for all (n, k) ∈ A ∩B,

d(XnkYnk, 0) ≤ d(Xnk, 0)d(Ynk, 0)

< ε2.

Since A ∩B ∈ F(I2) so < XnkYnk >∈
(
2c

I
0

)
F
.

Similarly it can be shown that the other classes of sequences are also sequence
algebra. 2

Property 4.7. If I is not maximal then the classes of sequences 2c
I
F ,

(
2c

I
)B
F
,(

2c
I
)R
F
,
(
2c

I
)BR

F
,
(
2c

I
0

)
F
,
(
2c

I
0

)B
F
,
(
2c

I
0

)R
F
and

(
2c

I
0

)BR

F
are not convergence free.

Proof. The result follows from the following example.

Example 4.4. Consider the classes of sequences 2c
I
F . Let I2 be the ideal of finite

subsets of N ×N . Let us consider the sequence < Xnk > defined by
X1k = 0 for all k ∈ N and for n ̸= 1 and all k ∈ N ,

Xnk(t) =


t+ 1, for −1 ≤ t ≤ 0,

−n(n+ 1)−1t+ 1, for 0 ≤ t ≤ 1 + n−1,

0, otherwise.

Let the sequence < Ynk > be defined by
Y1k = 0 for all k ∈ N and for n ̸= 1 and all k ∈ N ,

Ynk(t) =


1, for 0 ≤ t ≤ 1,

(n− t)(n− 1)−1, for 1 ≤ t ≤ n,

0, otherwise.

Here < Xnk >∈ 2c
I
F but < Ynk >/∈ 2c

I
F . Hence the space 2c

I
F is not convergence

free.
Similarly it can be shown that the other spaces are not convergence free. 2

5. Conclusion

In this paper we have introduced and studied the notion of I-convergent double
sequences of fuzzy real numbers. We have established the completeness property of
the introduced class of sequences. We have verified some algebraic and topological
properties. The difference between sequences of crisp numbers and the classes of
sequences of fuzzy numbers are given by providing suitable examples. The intro-
duced notion can be applied for further investigations from different aspects.
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