DOI QR코드

DOI QR Code

STRONG COHOMOLOGICAL RIGIDITY OF A PRODUCT OF PROJECTIVE SPACES

  • Choi, Su-Young (Department of Mathematics Ajou University) ;
  • Suh, Dong-Youp (Department of Mathematical Sciences Korea Advanced Institute of Science and Technology)
  • Received : 2011.03.29
  • Published : 2012.07.31

Abstract

We prove that for a toric manifold (respectively, a quasitoric manifold) M, any graded ring isomorphism $H^*(M){\rightarrow}H^*({\Pi}_{i=1}^{m}\mathbb{C}P^{ni})$ can be realized by a diffeomorphism (respectively, a homeomorphism) ${\Pi}_{i=1}^{m}\mathbb{C}P^{ni}{\rightarrow}M$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(KRF)

References

  1. S. Choi, M. Masuda, and D. Y. Suh, Quasitoric manifolds over a product of simplices, Osaka J. Math. 47 (2010), no. 1, 1-21.
  2. S. Choi, M. Masuda, and D. Y. Suh, Topological classification of generalized Bott manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 2, 1097-1112.
  3. S. Choi, M. Masuda, and D. Y. Suh, Rigidity problems in toric topology, a survey, to appear in Proc. Steklov Inst. Math; arXiv:1102.1359.
  4. M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. https://doi.org/10.1215/S0012-7094-91-06217-4
  5. R. Friedman and J. W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differential Geom. 27 (1988), no. 2, 297-369.
  6. M. Masuda and T. E. Panov, Semi-free circle actions, Bott towers, and quasitoric manifolds, Mat. Sb. 199 (2008), no. 8, 95-122. https://doi.org/10.4213/sm4110

Cited by

  1. Torus manifolds and non-negative curvature vol.91, pp.3, 2015, https://doi.org/10.1112/jlms/jdv008