DOI QR코드

DOI QR Code

Effect of Polygonum multiflorum Thunberg Extract on Lipid Metabolism in Rats Fed High-Cholesterol Diet

적하수오 추출물이 고콜레스테롤 급여 흰쥐의 지질대사에 미치는 영향

  • Choi, Jun-Hweok (Dept. of Food Science, Keimyung University) ;
  • Lee, Hye-Sung (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Kim, Young-Eon (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Kim, Byoung-Mok (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Kim, In-Ho (Division of Metabolism and Functionality Research, Korea Food Research Institute) ;
  • Lee, Chang-Ho (Division of Metabolism and Functionality Research, Korea Food Research Institute)
  • 최준혁 (계명대학교 식품가공학과) ;
  • 이혜성 (한국식품연구원 대사기능연구본부) ;
  • 김영언 (한국식품연구원 대사기능연구본부) ;
  • 김병목 (한국식품연구원 대사기능연구본부) ;
  • 김인호 (한국식품연구원 대사기능연구본부) ;
  • 이창호 (한국식품연구원 대사기능연구본부)
  • Received : 2012.03.16
  • Accepted : 2012.04.30
  • Published : 2012.07.31

Abstract

The principal objective of this study was to determine the effects of an ethanol extract of Polygonum multiflorum Thunberg (PMT) on body lipid metabolism in rats fed a high-cholesterol diet for 5 weeks. The rats were divided into 6 groups: a control group (I), a cholesterol-control group (II), a control group treated with 0.5% PMT (III), a control group treated with 1% PMT (IV), a cholesterol-control treated with 0.5% PMT (V), and a cholesterol-control group treated with 1% PMT (VI). Body weight gains and food efficiency ratios were not significantly different among the groups. The levels of serum blood glucose and triglycerides of the treated animals significantly decreased compared to the control and the cholesterol-control groups (p<0.05). There was a clear tendency of decreased LDL-cholesterol level in PMT-treated animals compared to the cholesterol-control group. However, no significant differences were observed in the serum HDL- and LDL-cholesterol levels. In the ratio of HDL-cholesterol to total cholesterol and HDL-cholesterol to LDL-cholesterol concentration, both the 0.5% PMT and 1% PTM extract intake groups had a higher percentage than in the control and cholesterol-control groups (p<0.05). In addition, the atherosclerotic index in serum was significantly lower in the PMT intake group than those in the group control and the cholesterol-control. These results indicated that the PMT extract was effective on the improvement of lipid metabolism in SD rats.

본 실험은 적하수오를 식이에 0.5%, 1% 혼합하여 5주간 섭취시켰을 때 적하수오가 고 콜레스테롤 식이를 장기 급여한 SD rat의 지질대사에 미치는 영향을 확인함으로써 적하수오의 기능성식품 소재로서의 가능성을 확인하였다. 실험기간 중 실험쥐의 체중증가는 1% cholesterol을 첨가한 그룹에서 cholesterol 대조군(II)에 비해서 적하수오를 섭취시킨 V군(1% cholesterol, 0.5% 적하수오), VI군(1% cholesterol, 1% 적하수오)에서 유의적으로 감소하였다. 장기무게는 SD rat의 간 무게가 cholesterol 식이군(II, V, VI) 모두에서 정상식이보다 유의적으로 증가하였으나 신장과 비장의 무게는 유의적인 차이를 나타내지 않았다. 혈청 내 포도당 농도는 정상군과 1% cholesterol 식이군 모두 0.5%, 1% 적하수오를 식이로 섭취시킨 그룹에서 유의적으로 감소하는 경향을 나타냈으며, 총 cholesterol과 HDL-cholesterol, LDL-cholesterol 모두에서 유의적인 차이는 나타나지 않았으나 총 cholesterol과 LDL-cholesterol은 수치상 감소하는 경향을 나타내었다. 하지만 비율로 보았을 때 적하수오를 보충급여한 군의 HDL-cholesterol 비율이 LDL-cholesterol 비율보다 유의적으로 증가하는 경향을 나타냈고 동맥경화지수 또한 적하수오 보충 공급한 그룹에서 낮아지는 것을 확인할 수 있었다. 혈중 중성지방의 농도는 일반식이군과 1% cholesterol 급여군 모두에서 적하수오 추가 급여군이 유의적으로 감소하는 경향을 나타냈고 ALT와 AST 활성은 유의적 차이를 나타내지 않았다. 본 실험의 결과에서 적하수오는 혈청 내 포도당 농도를 유의적으로 감소시켰다. 또한 중성지방의 농도도 유의적으로 감소시켰으며, HDL-cholesterol 비율이 LDL-cholesterol 비율보다 유의적으로 증가하는 경향을 나타냈고, 동맥경화지수 또한 적하수오 보충 공급한 그룹에서 낮아지는 것으로 보아 적하수오가 혈관계 장애로 인해 발병되는 고혈압, 당뇨, 뇌혈관질환, 동맥경화증과 같은 질환을 예방하는데 영향을 미칠 것으로 생각되며 기능성식품소재로서의 가능성이 기대된다.

Keywords

References

  1. Yu MH, Lee HJ, Im HG, Hwangbo MH, Kim HJ, Lee IS. 2005. The effect of kimchi with Monascus purpureus on the body weight gain and lipid metabolism in rat fed high fat diet. J Life Science 4: 536-541.
  2. Hill JO, Lin D, Yakubu F, Peter JC. 1992. Development of dietary obesity in rats: influence of amount and composition of dietary fat. Int J Obes Relat Matab Disord 16: 321-333.
  3. Lee HK. 1990. Recent progress in obesity research; diseases associated with obesity. Korean J Nutr 23: 341-346.
  4. Chan YC, Wang MF, Chang HC. 2003. Polygonum multiflorum extracts improve cognitive performance in senescence accelerated mice. Am J Chin Med 31: 171-179. https://doi.org/10.1142/S0192415X03000862
  5. The Korean Pharmacognosy Professor Association. 1995. Herb medicine. 1st ed. The Korean Pharmaceutical Association, Seoul, Korea. p 797-800.
  6. Chiu PY, Mak DH, Poon MK. 2002. In vivo antioxidant action of a lignan-enriched extract of Schisandra fruit and an antharaquinone-containing extract of Polygonum root in comparison with schisandrin B and emodin. Planta Med 68: 951-956. https://doi.org/10.1055/s-2002-35661
  7. Yim TK, Wu WK, Mak DH, Ko MW. 1998. Myocardial protective effect of an antharaquinone-containing extract of Polygonum multiflorum ex vivo. Planta Med 64: 607-611. https://doi.org/10.1055/s-2006-957531
  8. Wang W, Cao CY, Wang DQ, Zhao DZ. 2006. Effect of prepared Polygonum multiflorum on striatum extracellular acetylcholine and choline in rat of intracerebral perfusion with sodium azide. Zhongguo Zhong Yao Za Zhi 31: 751-753.
  9. Xiao PG, Xing ST, Wang LW. 1993. Immunological aspects of Chinese medicinal plant as antiageing drugs. J Ethnopharmacol 38: 167-175. https://doi.org/10.1016/0378-8741(93)90013-U
  10. Um MY, Choi WH, Aan JY, Kim SR, Ha TY. 2006. Protective effect of Polygonum multiflorum Thunb on amyloid $\beta$-peptide 25-35 induced cognitive deficits in mice. J Ethnopharmacol 104: 144-148. https://doi.org/10.1016/j.jep.2005.08.054
  11. Zhang H, Jeong BS, Ma TH. 1999. Antimutagenic property of an herbal medicine, Polygonum multiflorum Thunb detected by the Tradescantia micronucleus assay. J Environ Pathol Toxicol Oncol 18: 127-130.
  12. Li RW, David LG, Myers SP, Leach DN. 2003. Anti-inflammatory activity of Chinese medicinal vine plants. J Ethnopharmacol 85: 61-67. https://doi.org/10.1016/S0378-8741(02)00339-2
  13. Na MK, Park JY, An RB, Lee SM, Kim YH, Lee JP, Seong RS, Lee KS, Bae KH. 2000. Quality evaluation of Polygoni multiflori Radix. Kor J Pharmacogn 31: 335-339.
  14. Tang W, Eisenbrand G. 1992. Chinese drugs of plant origin. Springer-Verlag, Berlin, Germany. p 787-791.
  15. Yen GC, Chen HW, Duh PD. 1998. Extraction and identification of an antioxidative component from Jue Ming Zi (Cassia tora L.). J Agric Food Chem 46: 820-824. https://doi.org/10.1021/jf970690z
  16. Chang CH, Lin CC, Yang JJ, Namba T, Hattori M. 1996. Anti-inflammatory effect of emodin from Ventilago leiocarpa. Am J Chin Med 24: 139-142. https://doi.org/10.1142/S0192415X96000189
  17. Hatano T, Uebayashi H, Ito H, Shiota S, Tsuchiya T, Yoshida T. 1999. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull 47: 1121-1127. https://doi.org/10.1248/cpb.47.1121
  18. Kuo YC, Sun CM, Ou JC, Tsai WJ. 1997. A tumor cell growth inhibitor from Polygonum hypoleucum Ohwi. Life Science 61: 2335-2344. https://doi.org/10.1016/S0024-3205(97)00937-5
  19. Chan TC, Chang CJ, Koonchanok NM, Geahlen RL. 1993. Selective inhibition of the growth of ras-transformed human bronchial epithelial cells by emodin, a protein tyrosine kinase inhibitor. Biochem Biophys Res Commun 193: 1152-1158. https://doi.org/10.1006/bbrc.1993.1746
  20. Fujimoto H, Satoh Y, Yamaguchi K, Yamazaki M. 1998. Monoamine oxidase inhibitory constituents from Anixiella micropertusa. Chem Pharm Bull 46: 1506-1510. https://doi.org/10.1248/cpb.46.1506
  21. Hei ZQ, Huang HQ, Tan HM. 2006. Emodin inhibits dietary induced atherosclerosis by antioxidation and regulation of the sphingomyelin pathway in rabbits. Chin Med J 119: 868-870.
  22. Pan H, Liu XB, Zhang HQ. 2004. Emodin on the inhibition of human vascular smooth muscle cells proliferation. Anatomy Res 26: 121-123.
  23. Pan H, Liu XB, Zhang HQ. 2004. Emodin on the inhibition of human vascular smooth muscle cells proliferation. Anatomy Res 26: 121-123.
  24. Wursch P. 1979. Influence of tannin-rich caron pob fiber on the cholesterol metabolism in the rat. J Nurt 109: 685-692.
  25. Gabriel LP, William RH. 1982. Principles and methods of toxicology. Raban Press, New York, NY, USA. p 407-445.
  26. Reitman S, Flankel S. 1992. A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminase. Am J Clin Pathol 40: 2287-2291
  27. Park OJ. 1994. Plasma lipids and fecal excretion of lipids in rats fed a high fat diet, a high cholesterol diet or a low fat/high sucrose diet. Kor J Nutr 27: 785-794.
  28. Plaa GL. 1994. Detection and evaluation of chemically induced liver injury. In Principle and Methods of Toxicology. Hayes AW, ed. Taylor & Francis, Philadelphia, PA, USA. p 839-870.
  29. Mattson FH, Hollenbath EJ, Kligman AM. 1975. Effect of hydrogenated fat on the plasma cholesterol and triglyceride levels of man. Am J Clin Nutr 28: 726-731. https://doi.org/10.1093/ajcn/28.7.726
  30. The Association of Korean Clinical Pathology. 1994. The clinical pathology. Korea Medicine Co, Seoul, Korea. p 40-79.
  31. Goldstein JL, Brown MS. 1983. The LDL receptor defect in familial hypercholesterolemia: implications for pathogenesis and therapy. Med Clin North Am 66: 335-362.
  32. Applebaum BD, Haffner SM, Hartsook E, Luk KH, Albers JJ, Hazzard WR. 1984. Down-regulation of the low density lipoprotein receptor by dietary cholesterol. Am J Clin Nurt 39: 360-367. https://doi.org/10.1093/ajcn/39.3.360
  33. Potter SM, Bakhit RM, Essexsorlie DL, Weingartner KE, Chapman KM, Nelson RA, Prabhudesai M, Savage WD, Nelson AI, Winter LW. 1993. Depression of plasma cholesterol in men by consumption of baked products containing soy protein. Am J Clin Nutr 58: 501-506. https://doi.org/10.1093/ajcn/58.4.501

Cited by

  1. Chemical compositions of fermented Polygonum multiflorum Thunberg. root by Lentinula edodes (Berk.) Pegler mycelials cultivation vol.14, pp.4, 2016, https://doi.org/10.14480/JM.2016.14.4.184
  2. The Study on Anti-obesity Effects of Gamiygin-tang Extract and Ferment vol.27, pp.4, 2013, https://doi.org/10.7778/jpkm.2013.27.4.108
  3. Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors vol.42, pp.1, 2015, https://doi.org/10.5010/JPB.2015.42.1.34
  4. Free Radical Scavenging Effect and Oxidative Stress Protective Activity of Domestic Processed Polygoni Multiflori Radix vol.44, pp.6, 2015, https://doi.org/10.3746/jkfn.2015.44.6.809
  5. Effects of Cynanchi Wilfordii Radix and Polygoni Multiflori Radix liquors on lipid peroxidation and antioxidant activity in rat serum amd brain tissue vol.26, pp.3, 2012, https://doi.org/10.11002/kjfp.2019.26.3.350
  6. Comparison of Active Compounds for Each Supplement after Processing Methods of KIOM Polygonum multiflorum Thunberg Using Various Ingredient(s) vol.54, pp.5, 2012, https://doi.org/10.14397/jals.2020.54.5.37
  7. Polygonum multiflorum Thunb. Hot Water Extract Reverses High-Fat Diet-Induced Lipid Metabolism of White and Brown Adipose Tissues in Obese Mice vol.10, pp.8, 2012, https://doi.org/10.3390/plants10081509