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Abstract 
 

As in the other fields of mechanics, analytical methods represent an important analysis tool in marine hydrody-

namics. The analytical approach is interesting for different reasons : it gives reference results for numerical codes 

verification, it gives physical insight into some complicated problems, it can be used as a simplified predesign 

tool, etc. This approach is of course limited to some simplified geometries (cylinders, spheres, ...), and only the 

case of one or more cylinders, truncated or not, will be considered here. Presented methods are basically 

eigenfunction expansions whose complexity depends on the boundary conditions. The hydrodynamic boundary 

value problem (BVP) is formulated within the usual assumptions of potential flow and is additionally simplified 

by the perturbation method. By using this approach, the highly nonlinear problem decomposes into its linear part 

and the higher order (second, third, ...) corrections. Also, periodicity is assumed so that the time dependence can 

be factorized i.e. the frequency domain formulation is adopted. As far as free surface flows are concerned, only 

cases without or with small forward speed are sufficiently simple to be solved semi-analytically. The problem of 

the floating body advancing in waves with arbitrary forward speed is far more complicated. These remarks are 

also valid for the general numerical methods where the case of arbitrary forward speed, even linearized, is still too 

difficult from numerical point of view, and "it is fair to say that there exists at present no general practical numeri-

cal method for the wave resistance problem" [9], and even less for the general seakeeping problem. We note also 

that, in the case of bluff bodies like cylinders, the assumptions of the potential flow are justified only if the for-

ward speed is less than the product of wave amplitude with wave frequency. 
 

Keywords:  Semi-analytical method, Third order diffaction, Hydroelasticity, Bottom mounted cylinder, Eigen-function expansion 

 

 
 
1. Introduction  

As in the other fields of mechanics, analytical 

methods represent an important analysis tool in ma-

rine hydrodynamics. The analytical approach is inter-

esting for different reasons : it gives reference results 

for numerical codes verification, it gives physical 

insight into some complicated problems, it can be 

used as a simplified predesign tool, etc. This approach 

is of course limited to some simplified geometries 

(cylinders, spheres, ...), and only the case of one or 

more cylinders, truncated or not, will be considered 

here. Presented methods are basically eigenfunction 

expansions whose complexity depends on the bound-

ary conditions. The hydrodynamic boundary value 

problem (BVP) is formulated within the usual as-

sumptions of potential flow and is additionally simpli-

fied by the perturbation method. By using this ap-

proach, the highly nonlinear problem decomposes 

into its linear part and the higher order (second, 

third, ...) corrections. Also, periodicity is assumed so 

that the time dependence can be factorized i.e. the 

frequency domain formulation is adopted. As far as 

free surface flows are concerned, only cases without 

or with small forward speed are sufficiently simple to 
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be solved semi-analytically. The problem of the float-

ing body advancing in waves with arbitrary forward 

speed is far more complicated. These remarks are also 

valid for the general numerical methods where the 

case of arbitrary forward speed, even linearized, is 

still too difficult from numerical point of view, and "it 

is fair to say that there exists at present no general 

practical numerical method for the wave resistance 

problem" [9], and even less for the general 

seakeeping problem. We note also that, in the case of 

bluff bodies like cylinders, the assumptions of the 

potential flow are justified only if the forward speed 

is less than the product of wave amplitude with wave 

frequency. 

2. General Theory  

Classical Assumptions of perfect fluid and 

irrotational flow inside the fluid domain Ω, are adopt-

ed. We define the right-handed coordinate system (x, 

y, z) fixed to the body, with z = 0 the undisturbed free 

surface, the axis z pointing upward. The sea bottom 

SBT is assumed to be the horizontal plane placed at z = 

- H. 

With these assumptions, a nonlinear boundary value 

problem for the velocity potential ɸ (x, y, z) can be 

formulated : 
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where Ξ is the exact position of the free surface de-

fined by : 
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and v is the velocity of the rigid boundaries. 

The above BVP should be completed by and appro-

priate radiation condition at infinity. The convention 

used throughout this paper is that the normal vector n 

is pointing out of the fluid domain. 

In order to simplify the BVP (especially the free sur-

face condition) we proceed in two steps. First we 

assume the displacements to be small and we express 

the quantities at the instantaneous position by Taylor 

series developments with respect to their mean posi-

tion, and after that we introduce the perturbation se-

ries with respect to the wave steepness (ε = k0A with 

k0 – wave number, A – wave amplitude ) which al-

lows the decomposition of the nonlinear problem into 

the less complicated first, second, third, … order ap-

proximations. 

Even if the methodology remains the same for U = 0 

and U ≠ 0 there are some differences in the applica-

tion, so we consider both cases separately. 

2.1 The Zero Forward Speed Case 

In the case of no forward speed, the Taylor series 

expansion gives for the free surface elevation : 
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and for the free surface condition : 
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In this case the perturbation series for the potential 

has the following form : 

 

                                 (7) 

 

Also we assume time periodicity at frequency ω for 

the flow at first order : 

 

                     (8) 

 

From which we easily deduce the form of the higher 

order potentials : 

 

                              (9) 

                                      (10) 

 

The similar perturbation series is assumed for the free 

surface elevation Ξ (and all other quantities of inter-

est) : 
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After introduction of the perturbation series (7, 11) in 

(6) and (5) we obtain the following free surface con-

ditions and free surface elevations at the correspond-

ing orders : 
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where          . 

Of course, all these potentials must satisfy the La-

place equation in the fluid domain, zero normal ve-

locity on the fixed boundaries and corresponding 

radiation conditions which will be discussed later. 

We precise that only the first order quantities at fre-

quency ω, the second order quantities at frequency 

2ω and the third order quantities at frequency 3ω will 

be considered here. 

2.1.1 Wave Loads 

They are obtained by integrating pressure over the 

wetted surface of the body : 
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where the pressure is calculated from the Bernoulli 

equation : 
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Careful analysis should be performed to collect the 

terms of different order. The problem is simplified for 

fixed bodies and following expressions can be ob-

tained : 
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2.2 The Small Forward Speed Case 

In this case only the linear problem will be consid-

ered. Due to the presence of small forward speed U in 

the positive x direction (or the current in the negative x 

direction), the perturbation series has the following 

form : 

 

)( 2
)0(

 OU u   , 

)( 2
)0(

 OU u   (22) 

 

         (0) 
is the steady potential due to the presence 

of current, and can be further decomposed to the uni-

form current and the body perturbation 
(0)

,    x . 

Since we have chosen to describe the problem in the 

coordinate system (x, y, z) fixed to the body the inci-

dent potential can be written as : 
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where ωe denotes the well known encounter frequency 

(ωe = ω – koU cos β), β is the incidence angle i.e. angle 

between the direction of wave propagation and the 

positive x axis. A is the amplitude of the wave, ω is its 

frequency in the earth fixed coordinate system and ko 

is its wavenumber v = ko tanh koH. This allows us to 

write the following expressions for the potential and 

free surface elevation : 
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After perturbing the original BVP (3) we obtain at 

different orders : 
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where ∇0 denotes horizontal gradient    
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In this section we will also consider the case of a 

freely floating body so that the radiation problem must 

also be considered. We write first the general decom-

position of the total potential    into the incident 

  
 , diffracted   

  and the radiated    
  parts : 
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where   
  stands for the body displacements. 

According to this decomposition, the following body 

boundary conditions for different potentials can be 

deduced : 
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On the free surface we have : 
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The small forward speed problem defined above can 

be solved directly in that form but usually new pertur-

bation series with respect to forward speed parameter 

       is introduced (the incident potential being 

not affected by this perturbation) : 
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and the free surface elevation                to : 
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The inconvenience of this approach is that the addi-

tional perturbation series (35) causes the secularity of 

the solution, i.e. the unphysical growth for R → ∞ . It 

has been shown in [18] that this problem can be 

solved using the multiple scale analysis. 

We note here that the potential     is exactly the 

linear potential from the zero forward speed case, and 

the potential       is its first order correction with 

respect to the forward speed. Further onward, this 

potential will be decomposed into two parts. In fact, 

an explicit particular solution satisfying the free sur-

face condition : 
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and Laplace equation in the fluid, can be found [8. 16]. 

One of the possible expressions is : 
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A homogeneous solution should be added to the par-

ticular solution above, in order to annul the normal 

velocity on the cylinder, induced by   
    

. This ho-

mogeneous part of the solution is of the same type as 

    and the same method can be used for its evalua-

tion. The remaining part of the free surface condition 

(37) will be treated in the same way as   
   

 and 

  
   

 because no particular solution equivalent to (41) 

can be found. However, due to the rapid decay of the 

forcing function             
             

     

the radiation condition for this part (denoted   
    

) of 

the potential       will be of the Sommerfield type 

(69). 

2.2.1 Wave Loads 

In the case of small forward speed the situation is 

complicated by the presence of the steady potential 

but is simplified because we limited ourselves to the 

linear and steady second order loads, both of which 

can be obtained by knowing only the first order poten-

tial    and the steady potential   . 

 

 First order loads 

The following expression for the first order 

force can be obtained : 
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The global forces are usually decomposed into 

the so called excitation force associated with 

the diffracted and incident potential, and the 

radiation force which is written in the form of 
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added mass and damping coefficients : 
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 Steady second order loads 

The steady second order loads are important for 

the analysis of the slow drift motions of 

moored floating structures. The case of small 

forward speed is particularly important because 

it permits the evaluation of one component of 

the slow drift damping, namely the wave drift 

damping. In fact this damping is defined as the 

derivative of the steady second order force with 

respect to the forward speed, and it can be cal-

culated only after the resolution of the small 

forward speed diffraction-radiation problem. 

Only horizontal components of the steady se-

cond order forces will be considered here and 

the so called far-field expression for these forc-

es is [26]: 

 

}

]2[{
4

0

2

0
0

dC
g

dS
n

uu

C
e

u
uuu

S

u

Bo

Bo

















n

nF







 

 (45) 

 

The wave drift damping coefficient            

is usually obtained by numerical differentiation after 

calculating    for two small forward speed. Com-

pared to the case without forward speed the evaluation 

of the steady second order forces is much more com-

plicated and that is why some authors tried to propose 

some simplified methods to quantify these loads. An 

extremely simple 3D formula for wave drift damping 

coefficient was proposed in [7]. It turned out that, in 

the case of the fixed single or group of bottom mount-

ed cylinders, this formula gives exactly the same re-

sults as the complicated theory presented here. Theo-

retical proof of the formula was proposed in a contro-

versial paper [2] but it is not clear yet if the formula 

effectively should work for the general case, and one 

of the conclusions of the present paper is that it does 

not. Anyway, we recall here the expression for the x 

component of the wave drift damping coefficient B11 

for finite water depth [16] : 
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where     is the zero forward speed steady second 

order force (so called drift force), β is the wave inci-

dence and α is the ratio between the group velocity 

and phase velocity of waves           
        . The utility of the formula is evident be-

cause only the zero forward speed case needs to be 

solved which becomes nowadays quite a trivial task. 

2.3 Hydroelasticity 

Hydroelasticity contains another type of problems 

where the presented methods can be used. It concerns 

the bending of a vertical column under the action of 

waves. In fact, hydroelasticity is an important problem 

for large floating structures which have their natural 

frequencies sufficiently small to be excited by the 

common wave spectra. The elastic displacements of 

the body become of the same order as the rigid body 

displacements and should be treated together. The 

method we use to treat this kind of problem is ex-

plained in more details in [20] and consists in cou-

pling the beam finite element structural model with 

the 3D hydrodynamic model. Here we recall just the 

basic steps. 

2.3.1 Theoretical Assumption 

The cylinder is assumed to be a slender beam with 

the horizontal displacement W(z,t) = {w(z)e
-iωt

} along 

the height. Differential equation for the structural de-

flection of the beam, in the simpliest case, can be writ-

ten in the form [27] : 
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where m(z) is the mass distribution, E(z) is the modu-

lus of elasticity, I(z) is cross-sectional moment of iner-

tia and q(z) is the local pressure force acting on a hori-

zontal section of the cylinder. 

The numerical method used here is the well known 

finite element method based on the so called “dis-

placement” formulation. 
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2.3.2 Beam Finite Element 

 
Fig. 1. Finite element model 

 

As far as the structural problem is concerned, the 

theory we use is the classical one [27] and is repeated 

here only for completeness. We define an isolated 

finite element k of length l and we assume the dis-

placement w
k
(z) (in the local coordinate system) with-

in the element in the following form : 
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where 
T
 signify the transpose operation, {δ}

k
 is the 

vector of nodal displacements   
 and nodal slopes 

  
          

  , and      is the vector of the 

shape functions : 
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 (49) 

 

After the discretisation of the equation (47) using the 

method of the beam potential energy minimization, 

we obtain the well known matrix formulation of the 

problem : 
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The matrix [M]
k
 and [K]

k
 denote respectively mass 

and stiffiness matrix of the beam, with the following 

generic elements : 
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within E
k
 I

k
 denoting the averaged value of the stiff-

ness factor of the element and km the averaged mass 

per unit length. 

After performing the integration in (51) the follow-

ing expressions are obtained : 
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The vector {F}
k
 is the vector of the concentrated 

forces and moments at the ends of the element : 
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Finally the vector {f}
k 

represents the action of the 

distributed external forces which are in our case due to 

the water pressure. The elements   
  of this vector 

are obtained by the following expression : 
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As it will be shown later, the external forces distribu-

tion q
k
(z) is obtained by solving the hydrodynamic 

problem. 

2.3.3 Assembly 

Once the characteristic matrix and vectors of each 

element is calculated, the assembling is performed and 

the following linear system of equations is obtained : 

 
2( [ ] [ ]){ } { } { }    M K f F  (55) 

 

The assembly procedure is the classical one [27] and 

will not be repeated here. We note just that the dimen-

sion of the linear system of equations is         
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and that the global displacement vector is : 

}{ T
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 (56) 

 

In the case of “dry” structures the resulting matrix 

[M] and [K] are banded around the diagonal with the 

half-band width equal to 4. The vector {F} is the vec-

tor of the concentrated external loads, if any. 

2.3.4 Hydrodynamic problem 

The hydrodynamic problem is considered within the 

usual assumptions of the potential flow and the linear 

case is considered only. The total potential     is 

decomposed into incident   
   

, diffracted   
   

 part, 

and a part due to the cylinder displacements   
   

. We 

write : 
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The boundary condition on the body surface 

                     gives the following con-

ditions for different potentials : 
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The BVP’s are completed by the Laplace equation in 

the fluid domain, radiation condition for diffracted 

and radiated parts and the following free surface con-

dition : 

 

0
)1(

)1(2 





z


 g  (59) 

 

We note that the diffraction potential is exactly the 

first order diffraction potential without forward speed 

and that the radiation potentials satisfy similar kind of 

the BVP as those for the rigid body radiation, so that 

the same method can be used for their resolution. 

The pressure is obtained from the Bernoulli’s equa-

tion : 

 

p ϱgz+iωϱφ
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 (60) 

 

and is integrated over the body surface to give the 

forces which compose the right hand side vector {f}. 

First we consider the hydrostatic part –ϱgz. It can be 

shown that, in the case of the vertical cylinder, this 

component can be written in the following form : 

 

  
        

  

    

  
           

 

 

   

  

   

   
  

 

 (61) 

 

where    
  

is the hydrostatic stiffness matrix coeffi-

cient defined by : 

 

with S
k
 denoting the part of the column which corre-

sponds to the k-th finite element. 

We consider now the dynamic part of the pressure 

       , which is first divided into the part associated 

with the potentials   
   

and   
   

independent of the 

body displacements and the part associated with   
   

 

dependant of the displacements. We write for 
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and for   
   

: 

 

  
          

   
  

   
  

   

                
  

   
  
       

    

    
      

 

In order to write the matrix equation in the conven-

ient form, the above expression is rewritten as : 
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with the added mass    
  

 and damping   
  

coeffi-

cients, defined as follows : 
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We note that the added mass and damping coeffi-

cients (66) have finite value for all p, what means that 

the matrix of the resulting system of equations will be 
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full contrary to the case of the “dry” problem, as men-

tioned before (sect . 2.3.3). 

The assembly of the resulting coupled system of 

equations is now slightly more complicated but still 

straightforward so we can write : 
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 (67) 

The solution of this linear system of equations gives 

the global vector of nodal displacements which com-

plete the solution for the potential (57). 

3. Solution for the Potentials 

We can see that, except for the stationary po-

tential   , all the potentials 

                
 
      

  

    
 involved in the 

analysis satisfy a similar kind of boundary val-

ue problem. The free surface condition, which 

is the most difficult task to satisfy, is of the 

same type for all cases, except that in the linear 

case (       
  

    
  it has homogeneous form (12, 

59), and in the nonlinear (           or weakly 

nonlinear         cases it is nonhomogeneous one 

(14, 16, 37). The same procedure will be used for 

each of these potentials. Thus, we define the fol-

lowing boundary value problem for the generic 

potential ψ : 
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For the sake of clarity, the potential   is further 

subdivided in two parts    
B Q

 with the 

following BVP-s for each of them : 
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 (70) 

 

The potential ψB is the part of the potential caused 

by the imposed normal velocity on the body 

boundary, while the ψQ is the part caused by the 

forcing on the free surface. These two parts are 

fundamentally different and will be treated sepa-

rately. 

In the case of small forward speed another kind of 

BCP should also be considered. In fact the potential 

   cannot be treated as a special case of potential ψ, 

and an independent BCP should be solved : 
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This potential is of the local type and does not 

generate waves. 

On the other hand, the cylinder configurations 

which will be treated here are : 

 

 bottom mounted single cylinder 

 single truncated cylinder 

 array of bottom mounted cylinders 

 

We note here that the case of truncated cylinders 

array will not be treated explicitly but it can be 

constructed as a combination of the single truncated 

(71) 
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cylinder case and the case of bottom mounted cyl-

inders array. 

3.1 Bottom Mounted Single Cylinder 

3.1.1 Potential ψB 

The general methodology for this kind of poten-

tials was first given in [12] for infinite water depth 

(2D of vertical wall for finite or infinite water depth 

was also considered). The method is the 

eigenfunction expansion which is possible due to 

the relatively simple geometry. We briefly resume 

the basic steps. 

The solution is assumed in the following 

eigenfunction expansion form : 
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where Hm are Hankel functions of the first kind 

          and    are the modified Bessel 

functions. The functions       are defined by : 
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with                      . 

Application of the boundary condition on the cyl-

inder (69) and the use of orthogonality of 

eigenfunctions, gives the expressions for the un-

known coefficients βmn : 
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where C0 and Cn are defined by : 
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and vm(z) follows from the Fourier series expan-

sion : 
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3.1.2 Potential ψQ 

The situation is now more complicated and the 

eigenfunction expansion method alone is not suffi-

cient. The integral equation method must be intro-

duced. The method presented here is based on us-

ing the integral equation technique with the classi-

cal Green function expressed in its eigenfunction 

expansion for [13]. This method is inspired from 

the method presented in a relatively unnoticed 

(publication in Japanese) paper [21] where the in-

teraction of vertical circular cylinder with water 

waves and small current was treated. We note here 

that two alternative methods are also possible [3, 

24]. The first one uses the special kind of the Green 

function which satisfy the condition of zero normal 

velocity on the cylinder, while the second one uses 

the Weber transform technique. The final expres-

sions are essentially the same. We describe now 

briefly the general method presented in [17]. First 

we write the Green function for two points, 

                  and           
       , is its eigenfunction expansion form : 
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The integral equation for the BVP (70) can be 

written in the form : 
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It can be shown that the integral over the surface 

at infinity    disappears in all cases considered 

here [17], which represents, in some way, the radia-

tion condition for   . 

The next step is to write the solution for    on 

the cylinder, in the eigenfunction expansion form : 
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If we write now the integral equation for one point 

inside the cylinder,               we 

can deduce the value of the Amn coefficients by 

using the orthogonal property of eigenfunctions : 
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By returning this solution in the integral equation 

we obtain the expression for each Fourier mode of 

the potential at any point in the fluid : 
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As we can see, we represented the solution, of the 

BVP with nonhomogeneous free surface condition, 

as a series of eigenfunctions which individually 

satisfies the homogeneous free surface condition. 

However it can be shown [3] that this series satis-

fies an nonhomogeneous condition in the limiting 

sense z →    . 

This will cause the appearance of a logarithmic 

type of singularity when calculating the potential 

on the free surface. Another problem arises in the 

calculation of the infinite integrals in (83) which 

generally include slowly decaying functions so that 

the asymptotic methods should be involved. In 

summary, we should be very careful [3, 17] when 

evaluating the different integrals and infinite sums 

involved in the above expressions. 

3.1.3 Potential    

In the case of the bottom mounted vertical circular 

cylinder, the expression for the double body poten-

tial    is very simple, and is represented by the 

dipole potential : 
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3.2 Single Truncated Cylinder 

The configuration and the notations for this case 

are presented on the figure 2. 

(83) 
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3.2.1 Potential    

First we consider the diffraction case which 

means that v(z) becomes the radial derivative of the 

incident potential denoted here by ψ
I
. The method 

used here is inspired from [10], and is also based on 

the use of eigenfunction expansions in respective 

domains. The eigenfunction expansion for the inte-

rior region can be written in the form : 
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Fig. 2. Different fluid domains. 

 

with            , and Im denoting the mod-

ified Bessel functions. 

In the exterior domain we write the eigenfunction 

expansion in the form similar to (72) : 
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Orthogonality of the eigenfunctions in z direction 

is now used, and the boundary conditions on the 

cylinder              and continuity 

conditions on the intersection surface    
           are written in the form : 
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 (91) 

 

 

We can now write the linear system of equations 

for each Fourier mode        : 
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which can be rewritten in the matrix form : 
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and I denoting the unity matrix. 

All the coefficients in the matrix equation above 

are easily deduced from (88) to (91). The solution 

of the system gives the unknown coefficients 

   
 

and    
 

 which terminates the calculation of 

the potential. In the case of radiation the procedure 

is similar except that particular solution should be 

added to the expression for the potential in the inte-

rior region : the eigenfunction expansion (86) satis-

fies the condition of zero normal velocity on the 

bottom of the cylinder which is not the case for all 

radiation problems. 

Only three independent radiation problems need 

to be considered. 

 

 Surge j = 1 

The boundary conditions for surge are : 
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so that there is no need for additional particular 

solution but only the modes m = 1 and m = -1 in 

the expansions (86,72) should be included. 

 

 Heave j=3 

The boundary conditions for heave are : 
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so that the particular solution can be chosen as : 
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and only the zeroth Fourier mode is included in 

the expansions (86, 72) 

   

 Pitch j = 5 

The boundary conditions for pitch are : 
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so that the particular solution becomes : 
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and only the modes m = 1 and m = -1 in the ex-

pansions (86, 72) should be included. 

 

A part of that, the procedure is completely similar 

and will not be detailed here. 

3.2.2 Potential ψQ 

The method remains very similar. In fact, the so-

lution ψQ for the complete cylinder (81, 83), plays 

here the role of the incident potential ψ
I
. All ex-

pressions and general methodology leading to the 

linear system of equations are exactly the same. 

However, the case of   
    

is a little bit different, 

In fact, it is simpler since the particular solution is 

explicitly known and can be used directly as the 

incident potential ψ
I 
for the homogeneous part [15]. 

3.2.3 Potential    

Even if the methodology remains the same for this 

case, the eigenfunctions expansion in the exterior 

region changes due to the different free surface 

condition : 

 

 

 

 

 

 (108) 

 

with μn = nπ / H. 

The rest of the procedure is the same as in the case 

of ψB. 

3.3 Array of Bottom Mounted Cylinders 

The geometry and basic definitions are shown on 

the figure 3. 

 

 
Fig. 3. Basic configuration. 
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3.3.1 Potential ψB 

The method which will be explained here is es-

sentially based on the work by Linton & Evans [14] 

where the linear diffraction by an array of bottom 

mounted cylinders was presented. 

First we assume the following eigenfunction ex-

pansion for ψB : 

 

 

 

 

 

 (109) 

 

After applying the boundary condition on each 

cylinder using the Graff’s addition theorem for 

Bessel functions, we obtain the following systems 

of equations for the unknown coefficients    
  : 
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Near the cylinder         ,     , this ex-

pression can be simplified using the Graff’s addi-

tion theorem together with (110, 111). The simple 

expression in terms of the k-th cylinder local coor-

dinates is : 

 

 

 

 

 

 

 

 

 (113) 

3.3.2 Potential    

As in the single cylinder case we start by writing 

Green’s theorem for one point outside the fluid 

domain : 
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The potential on the cylinder k is then assumed in 

the form : 
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After writing the Green’s theorem (114) for one 

point inside the cylinder              
     , carrying out the integration by ζ, using 

the orthogonality of the functions fn (z) and the 

Graff’s addition theorem for Bessel functions, ex-

ploiting the orthogonality of functions e
imθ

 and rear-

ranging the different terms we obtain the following 

systems of equations for the unknown coefficients 

   
  : 
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This completes the solution for the potential    

on the cylinders. 

Once the potential on the cylinders is found, the 

potential at any point in the fluid can be calculated 

using Green’s theorem. The resulting expression is : 
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As in the case of    this expression can be sim-

plified near the cylinders             : 
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 (119) 

For rk = ak expression reduces to (115). 

The numerical implementation of the method 

must be performed very carefully because of many 

convergence problems associated with the 

eigenfunction expansions, Graff’s theorem and 

especially numerical integration over the free sur-

face. For details we refer to [19]. 

4. Results and Discussions 

We start by presenting some results for the excit-

ing forces on a fixed bottom mounted cylinder, up 

to third order. On figures 4, 5 and 6, first, second 

and third order exciting surge forces are presented 

for the cylinder of the radius a standing in the water 

of the depth H = 10a.  

 
Fig. 4. Real and imaginary part of the first order force on the 

bottom mounted cylinder of radius a in the water depth H = 

10a. 

As usual, the total second and third order forces 

are decomposed into different components associ-

ated with the different contributions :

 
(a) 

 

 
(b) 

 

Fig. 5. Real (a) and imaginary (b) part of the second order 

force on the bottom mounted cylinder of radius a in the water 
depth H = 10a.
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(a) 

 

 
(b) 

 

Fig. 6. Real (a) and imaginary (b) part of the third order force 
on the bottom mounted cylinder of radius a in the water depth 

H = 10a. 

 

   
   

- part of the second order force induced 

by the quadratic products of the first order 

quantities 

   
   

- part of the second order force induced 

by the second order potential 

     =   
   

   
   

 

   
   

- part of the third order force induced by 

the triple products of the first order quantities 

   
   

- part of the third order force induced by 

the products of the first and second order 

quantities 

   
   

- part of the third order force induced by 

the third order potential 

     =   
   

   
   

   
   

  

From a practical point of view, a disappointing 

result shown by these figures is that all contribu-

tions to the forces are important in the whole prac-

tical range of frequencies and none of them can be 

neglected. 

As a consequence, u approximative methods 

based on long wave theories have a very restricted 

range of application and often have no practical 

utility [17]. 

We turn now to the problem with small forward 

speed and first we show the results for the first 

order surge exciting forces on a bottom mounted 

cylinder, in a different water depth, H = a.  

 

 
Fig. 7. First order surge exciting force on the bottom mounted 

cylinder for three different values of Froude number. Cylinder 

has radius a, water depth is H = 10a and wave incidence is β 
= 0. 

 

On figure 7 this force is presented for three differ-

ent values of the Froude number         . 

The added mass and damping coefficients for the 

same case are presented on figure 8. Interesting 

results concerning the wave drift damping coeffi-

cients are shown on figures 9 and 10. Figure 9 con-

cerns the case of the fixed cylinder, and in this case 

the results obtained by the simple formula (46) are 

indistinguishable from the semi-analytical calcula-

tions. Contrarily, the case of the freely floating 

cylinder presented on the figure 10 leads to a dif-

ferent conclusion because there are important dif-

ferences between the two sets of results. Surprising-

ly the case of       shows again complete 

agreement between the simple formula and the 

analytical calculations!? We note that the calcula-

tions of the wave drift damping coefficient were 

performed both by the far-field method (45) and the 

near-field method (not presented here) and that 



132  Šime Malenica / International Journal of Ocean System Engineering 2(2) (2012) 116-138 

 

 

 (a) 

 

 
(b) 

 

Fig. 8. Added mass (a) and damping (b) coefficients for the 

bottom mounted cylinder and for three different values of 
Froude number. Cylinder has radius a, water depth is H = a 

and wave incidence is β = 0. 

 

 
Fig. 9. Wave drift damping coefficient B11 for a fixed bottom 

mounted cylinder. Cylinder has radius a and water depth is H 
= a. 

 

both sets of results are identical. Additionaly, the 

completely numerical results obtained by Grue [11] 

also agree with these analytical results. 

In figure 11, we present now one result useful for 

more detailed benchmarking purposes. It concerns 

the free surface wave elevation around the cylinder. 

The cylinder is from the previous case and wave 

number is k0 = 1.2. We note important modifica-

tions of the free surface influenced by the presence 

of the current, which has a direct consequence on 

severe modifications of the steady second order 

loads.
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(a) 

 

 
(b) 

 

Fig. 10. Wave drift damping coefficient B11 for freely floating 

complete cylinder and for incidences β = 0 (a) and β = π/4 (b). 
Cylinder has radius a and water depth is H = a. 

 

Another interesting phenomenon concerning the 

wave-current-floating body interactions is the secu-

larity (unphysical growth of the solution far away 

from the body) of the additional perturbation by τ 

(35). In spite of the recognized secularity of the 

solution the perturbation by τ is a common ap-

proach to treat this problem [26]. Only recently [25, 

5] it was numerically shown that both solutions 

(secular and non-secular) are the same as far as the 

global forces are concerned. This was further con-

firmed by the multiple scale approach [18] and it 

was shown theoretically that two solutions should 

be the same on the body. However, two solutions 

differ very quickly when we leave the body so that 

Fig. 11 Free surface wave elevation for the fixed bottom 

mounted cylinder. Cylinder has radius a, water depth is H = a, 
wave incidence is β = π/4 and wave number k0a = 1.2. 

 

the secular approach should not be used in the cal-

culation of the wave elevation near the body (be-

tween the columns of a multi column structure for 

example) because the elevation can be seriously 

overestimated. Figure 12 which represents the view 

of the potential (proportional to the wave elevation) 

on the free surface around the fixed cylinder con-

firms the above comments. 

 
 

 
 

 

 
 

 

 
(a) 

 

 

 

 

 
 

 

 
(b) 

 
Fig. 12. Secular (a) and non-secular (b) solution for the imag-

inary part of the diffracted potential on the free surface. Cyl-

inder radius is a = 1., the water depth is H = a, wave inci-
dence is β = 0 and wavenumber is k0 = 0.7. 

 

Now we turn to the case of the truncated cylinder 

and in figure 13 we first present the values of the 

first order surge and heave exciting forces for dif-

ferent draughts of the cylinder with the radius a in  
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(a) 

 

 
(b) 

 
Fig. 13. First order surge (a) and heave (b) exciting forces on 

bottom mounted vertical cylinder. The cylinder radius is a, 

water depth is H = 5a and wave incidence is β = 0. Dott 
dashed line : D = 4a; dashed line: D= 3a; dotted line D = 2a; 

full line D = a. 

 

the water of depth 5a. More interesting results are 

shown in figure 14. It concerns the comparisons of 

the wave drift damping coefficient calculated by 

the simple formula with the values obtained accord-

ing to the semi-analytical method described here. It 

can be seen that the formula works quite well for 

deep-draught cylinder but not for the “short” one. 

Contrarily to the case of the freely floating bottom 

mounted cylinder, noticeable differences exist be-

tween the formula and semi-analytical calculations 

also for β = π/4. 

We consider now the case of an array of bottom 

mounted circular cylinders. In figure 15 we show 

again the results for the wave drift damping coeffi-

cient. In this case, the theory and the formula give 

exactly the same results. The most complicated 

results obtained by the semi-analytical approach 

described here, are pre presented in last figures 16, 

17. They concern the values of the free surface 

elevation up to the second order for an array of 

cylinders. As for the forces on the figure 5, we use 

the equivalent notations for the free surface eleva-

tions. It is believed that the second order theory can 

explain wave amplifications around off-shore struc-

tures which are not captured by linear theory. In 

some extent this is confirmed by these figures 

where we can see that in some cases, the second 

order component of the free surface elevation can 

dominate the first order one. The numerical com-

plexities in the evaluation of these quantities are 

numerous, however the semi-analytical method 

remains superior to the complete numerical models 

because of its rapidity and precision. 

Finally we consider the problem of hydroelasticity 

of the vertical column. The case chosen to show the 

efficiency of the method is that from [23]. The cyl-

inder has a radius of 10m, in water of depth 200m. 

The distributed mass along the length of the cylin-

der is assumed to be half of its displaced mass. A 

concentrated mass m0 equal to the total displaced 

mass (twice the distributed mass) is located at the 

free surface. The stiffness factor of the cylinder is 

chosen such that EI/H
3
 = 0.41m0s

-2
. The amplitude 

of the displacement at the top of the column for 

different wave periods is shown in figure 18a. We 

can observe the highly tuned resonance at approx-

imately T = 6.5s. Finally, in figure 18b we present 

the deformation of the column for T = 6.5s, in an 

instant when the top of the column reaches its max-

imal displacement. 
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Fig. 14. Wave drift damping coefficient B11 for a fixed trun-

cated cylinder. The cylinder radius is a, water depth is H = 5a 

and wave incidences are β = 0 (a) and β = π/4. Dotted line: 
semi- analytic for D = 4a ; full line: semi-analytic for D = a; 

squres : formula (46) for D = 4a; circles: formula (46) for D = 

a. 

 
Fig. 15. Wave drift damping coefficient B11 for an array of 

four bottom mounted cylinders of the radius a placed at the 

corners of the square of side length equal to 7a. Dotted line: β 

= 0.,H = 1.; full line:β = 0.,H = ∞; dot-dashed line: β = π/6, 

H = 1.; dashed line: β = π/6,H = ∞. 
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(c) 
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(d) 

 

Fig .16. Components of non-dimensional first and second 

order wave elevation amplitude along x = y for an array of 
four bottom mounted cylinders of radius a placed at the cor-

ners of the square of side length 4a. Wave incidence is β = 

π/4. Solid line k0a = 1.66; dashed line: k0a = 0.468; dotted line: 
k0a = 0.754. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 17. Components of non-dimensional first and second 
order wave run-up amplitude around cylinders for an array of 

four bottom mounted cylinders of radius a placed at the cor-

ners of the square of side length 4a. Wave incidence is β = 
π/4 and k0a = 1.66. Dashed line: |η(1)|/A; dot-dashed line: |η(21)|/ 

k0A
2; dotted line: |η(22)|/ k0A

2; full line: |η(2)|/ k0A
2. 
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Fig. 18. Amplitude of the displacement at the top of the col-

umn for different wave periods (a) and elastic deformation of 
the column at T = 6.5s. The circles on the figure (a) are the 

results from Newman (1994). 

5. Conclusion 

The methods to treat various kinds of hydrody-

namic problems for different cylinder configura-

tions are presented here. Higher order diffraction at 

zero forward speed, diffraction-radiation at small 

forward speed and hydroelasticity were considered. 

The boundary value problems emerging from the 

different cases are very similar and all of them can 

be treated by the same methods. the efficiency of 

these methods is demonstrated by various examples. 

The analytical methods have their place in the ma-

rine hydrodynamics because of their relative sim-

plicity. Due to their high precision, only this kind of 

method allows the highly nonlinear developments 

with sufficient confidence. These results are essen-

tial for validation of more general numerical codes, 

which become more and more ambitious due to the 

rapid computer developments. 
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