Length-Weight Relations and Condition Factor (K) of Zacco platypus Along Trophic Gradients in Reservoir Ecosystems

인공호의 부영양화에 따른 피라미(Zacco platypus) 개체군의 전장-체중 관계 및 비만도 지수

  • Ko, Dae-Geun (Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • Han, Jeong-Ho (Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University) ;
  • An, Kwang-Guk (Department of Biological Science, College of Biological Sciences and Biotechnology, Chungnam National University)
  • 고대근 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 한정호 (충남대학교 생명시스템과학대학 생물과학과) ;
  • 안광국 (충남대학교 생명시스템과학대학 생물과학과)
  • Received : 2012.01.30
  • Accepted : 2012.04.10
  • Published : 2012.06.30

Abstract

The objective of this study was to determine the weight-length relations and condition factor (K) of Zacco platypus, along the trophic gradients from oligotrophic to eutrophic state in six reservoir ecosystems ($B_aR$, $Y_yR$, $J_yR$, $G_pR$, $Y_dR$, and $M_sR$), during 2008~2010. The species was selected as a sentinel species for the study, due to its wide distribution and wide trophic gradient. The analysis of trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (Chl-a), indicated that reservoirs of $Y_yR$ and $B_aR$ were classified as to be in an oligotrophic state (30~40), the $J_yR$ and $G_pR$ as mesotrophic (40~50), and the $Y_dR$ and $M_sR$ as eutrophic state (50~70). Total 47 species and 26,226 individuals were sampled from 6 reservoirs and sensitive species dominated in the oligotrophic reservoirs ($Y_yR$ and $B_aR$). In the mean time, the tolerant speciesdominated the community in the mesotrophic ($J_yR$ and $G_pR$) and eutrophic ($Y_dR$ and $M_sR$) reservoirs. Regression analysis of body weight, against the total length, indicated that the regression coefficient (b value) was lower in the oligotrophic reservoir (2.77~2.79) than the mesotrophic (3.07~3.17) and eutrophic reservoirs (3.15~ 3.21). This result suggests that the population growth rate Zacco platypus reflected the trophic gradients of the reservoirs. The analysis of condition factor (K) against the total length showed positive slopes (b>3.0) in mesotrophic and eutrophic reservoirs, and a negative slope (b<3.0) in oligotrophic reservoir. The variation of the regression slope of "b" in Z. platypus was accounted for 79.7% [$b=0.012{\times}TSI(TP)+2.395$, p=0.017] by the variation of TSI (TP) and 82.2% [$b=0.013{\times}TSI(Chl-a)+2.36$, p=0.013] by the variation of TSI (Chl-a). The proportion of DELT abnormality increased as the trophic state increases in the reservoirs. The overall data suggest that the growth of the fish populations, based on the length-weight relations and condition factor, reflected the trophic state of nutrient and phytoplankton biomass of the reservoir waters. Thus, in spite of the tolerant characteristics of Z. platypus, hypertrophic states might negatively affect the health of the population.

본 연구는 인공호의 영양 단계에 따른 피라미 개체군의 전장-체중 관계 및 비만도 지수 (K)의 차이를 알아보기 위해 2008년~2010년까지 부안호, 양양호, 진양호, 금풍지, 예당지 및 마산지 등의 6개 인공호를 대상으로 실시하였으며, 광범위한 분포 특성과 섭식 특성을 보이는 피라미(Zacco platypus)를 본 연구의 대상 어종으로 선정하였다. 총인 (TP)과 엽록소-a (Chl-a)를 이용한 영양상태지수(TSI) 분석 결과 양양호와 부안호는 빈영양(30~40), 진양호와 금풍지는 중영양 (40~50), 예당지와 마산지는 부영양 (50~70)상태로 나타났다. 6개 호수에서 총 47종 26,226개체의 어류가 채집되었으며, 빈영양호 (양양호, 부안호)에서는 민감종이 우세한 현상을 보였다. 한편, 중영양호 (진양호, 금풍지)와 부영양호 (예당지, 마산지)에서는 내성종이 우세한 것으로 분석되어 호수의 영양 상태에 따라 우세종의 내성특성에 차이를 보이는 것으로 나타났다. 전장-체중 관계 분석 결과에 따르면, 회귀계수 b값은 중 영양호(3.07~3.17)와 부영양호(3.15~3.21)에 비해 빈영양호 (2.77~2.79)에서 낮은 값을 보였다. 이러한 결과는 호수의 영양상태가 피라미 개체군의 성장도에 영향을 주는 것으로 사료된다. 전장에 따른 비만도 지수 (K) 관계 분석 결과 중영양호와 부영양호에서는 양의 기울기를 보인 반면, 빈영양호에서는 음의 기울기를 나타내 호수의 영양상태에 따라 차이를 보였다. TSI (TP), TSI (Chl-a)와 회귀계수 b값의 상관관계를 분석한 결과 b=0.012*TSI (TP)+2.395 ($R^2$=0.797, p=0.017), b=0.013*TSI (Chl-a)+2.367 ($R^2$=0.822, p=0.013)으로 나타나 높은 상관관계를 보였다. 한편, 부영양화가 진행될수록, 비정상개체의 비율이 증가하는 것으로 나타났다. 결론적으로, 전장-체중 관계와 비만도 지수 분석에 의한 피라미 개체군의 성장도는 영양염류나 식물플랑크톤의 생체량과 같은 영양상태를 반영하는 것으로 사료되며, 과도한 부영양화는 수환경의 오염을 초래하여 피라미 개체군의 성장과 건강도에 부정적인 영향을 미치는 것으로 사료된다.

Keywords

References

  1. An, K.G. 2000. Articles: Monsoon inflow as a major source of In - Lake Phosphorus. Korean Journal of Limnology 33(3): 222-229.
  2. Anderson, R.O. and R.M. Neumann. 1996. Length, weight and associated structural indices, p. 447-482. In: Fisheries Techniques, 2nd edition (Murphy, B.R. and D.W. Willis eds.). American Fisheries Society, Maryland, USA.
  3. Anderson, R.O. and S.J. Gutreuter. 1983. Length weight and associated structural indices, p. 283-300. In: Fisheries Techniques (Johnson, L.A. ed.). American Fisheries Society, Maryland, USA.
  4. Busacker, G.P., I.A. Adelman and E.M. Goolish. 1990. Grow-th, p. 363-377. In: Methods for Fish Biology (Schreck, C.B. and P.B. Moyle eds.). American Fisheries Society, Maryland, USA.
  5. Carlson, R.E. 1977. A trophic state index for lake. Limnology and Oceanography 22: 361-369. https://doi.org/10.4319/lo.1977.22.2.0361
  6. Choi, J.K., J.S. Choi, H.S. Shin and S.C. Park. 2005. Articles: Study on the dynamics of the fish community in the lake Hoengseong region. Korean Journal of Limnology 38(2): 188-195.
  7. Choi, J.S. 2005. Fish fauna and community in Cheongpyeong reservoir. Korean Journal of Limnology 38(1): 63-72.
  8. Choi, J.S. and J.K. Kim. 2004. Original Articles: Ichthyofauna and fish community in Hongcheon river, Korea. Korean Journal of Environmental Biology 22(3): 446-455.
  9. Choi, J.S., J.K. Kim, Y.S. Jang, K.Y. Lee, H. Ryu, J. Jeong and B. Kim. 2006. Articles: Characteristics of fish community on six lakes located in Gyeonggi. Korean Journal of Limnology 39(2): 178-186.
  10. Choi, K.C., S.R. Jeon, I.S. Kim and Y.M. Son. 1989. Distribution map of Korean freshwater fishes. Korean Limnobiology Research Center. p. 2-202.
  11. Edwards, R.W. and D.T. Crisp. 1982. Ecological implications of river regulation in the United Kingdom, p. 843-865. In: Gravel Bed Rivers (Bathurst, J.C., R.D. Hey and C.R. Thorne, eds.). Fluvial Processes, Engineering and Management. John Wiley & Sons, New York, USA.
  12. Jang, Y.S., J.S. Choi, K.Y. Lee, J. Seo and B. Kim. 2007. Articles: Length-weight relationship and condition factor of Zacco platypus in the lake Hoengseong. Korean Journal of Limnology 40(3): 412-418.
  13. Jeon, S.R. 1980. Studies on the distributions of the Korean freshwater fishes. PhD thesis. Chungang University, Rep. Korea. p. 18-45.
  14. Jeon, S.R. 1982. Studies on fresh-water fish fauna in the rivers flowing into the East Sea. Academic Report of Nature Conservation 4: 230-248.
  15. Karr, J.R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6: 21-27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
  16. Kent, W.T., B.L. Kimmel and F.E. Payne. 2002. Reservoir limnology. Shingwang, p. 66-169.
  17. Kerr, S.R. and R.A. Ryder. 1988. The applicability of fish yield indices in freshwater and marine ecosystems. Limnology and Oceanography 33(4): 973-981.
  18. Kim, I.S. 1997. Illustrated Encyclopedia of Fauna & Flora of Korea. Vol. 37. Freshwater Fishes. Ministry of Education, Korea. Seoul, Rep. Korea. p. 133-520.
  19. Kim, I.S. and H.G. Kim. 1975. Articles: A study on the water pollution and its influence on the fish community in Jeonju-cheon Creek, Jeonrabug-do Province, Korea. Korean Journal of Limnology 8: 7-14.
  20. Kim, I.S. and J.Y. Park. 2002. Freshwater Fishes of Korea. Kyohak Publishing Co., Ltd, Seoul, Rep. Korea. p. 1-465.
  21. Kim, I.S., M.K. Oh and K. Hosoya. 2005. A new species of cyprinid Fish, Zacco koreanus with redescription of Z. temminckii (Cyprinidae) from Korea. Korean Journal of Ichthyology 17(1): 1-7.
  22. Kim, J.K., J.H. Han and K.G. An. 2010. Articles: Tolerance range analysis of fish on chemical water quality in aquatic ecosystems. Korean Journal of Limnology 43(4): 459- 470.
  23. Kimmel, B.L. and A.W. Groeger. 1984. Factors controlling phytoplankton production in lake and reservoirs. U.S. EPA-440/5/84-001 277-281.
  24. Kong, K.H., J.H. Lee and K.G. An. 2009. The analysis of water quality and suspended solids effects against transparency of major artificial reservoirs in Korea. Korean Journal of Limnology 42(2): 221-231.
  25. Krenkel, P.A., G.F. Lee and R.A. Jones. 1979. Effects of TVA impoundments on downstream water quality and biota, p. 289-309. In: The Ecology of Regulated Streams (Ward, J.V. and J.A. Stanford, eds.). Plenum Press, New York, USA.
  26. LeCren, E.D. 1951. The length-weight and condition in the seasonal cycle in gonad weight and condition in the perch Perca fluviatilis. Journal of Animal Ecology 20(2): 201- 219. https://doi.org/10.2307/1540
  27. Lee, H.J. and K.G. An. 2009. The development and application of multi-metric water quality assessment model for reservoir managements in Korea. Korean Journal of Limnology 42(2): 242-252.
  28. Macan, T.T. 1974. Freshwater ecology, 2nd ed. London: Longmans, viii. p. 343.
  29. Matuszek, J.E. 1978. Empirical predictions of fish yields of large north American lakes. Transactions of the American Fisheries Society 107: 385-394. https://doi.org/10.1577/1548-8659(1978)107<385:EPOFYO>2.0.CO;2
  30. McConnell, W.J., S. Lewis and J.E. Olson. 1977. Gross photosynthesis as an estimator of potential fish production. Transactions of the American Fisheries Society 106(5): 417-423. https://doi.org/10.1577/1548-8659(1977)106<417:GPAAEO>2.0.CO;2
  31. MEK (Ministry of Environment, Korea). 2001. The general report of investigation technique development for limnological environment in Korea, p. 28.
  32. Melack, J.M. 1976. Primary productivity and fish yields in tropical lakes. Transactions of the American Fisheries Society 105(5): 575-580. https://doi.org/10.1577/1548-8659(1976)105<575:PPAFYI>2.0.CO;2
  33. Nelson, J.S. 1994. Fishes of the world (3rd ed.). John Wiley & Sons, New York, USA.
  34. Ney, J.J. 1993. Practical use of biological statistics, p. 137-158. In: Inland Fisheries Management of North America (Kohler, C.C. and W.A. Hubert eds.). American Fisheries Society, Maryland, USA.
  35. Rada, R.G. and J.C. Wright. 1979. Factors affecting nitrogen and phosphorus levels in canyon Ferry reservoir, Monata, and its effluent waters. Northwest Science 53(3): 213-220.
  36. Ryder, R.A. 1965. A method for estimating the potential fish production of north-temperature lakes. Transactions of the American Fisheries Society 94: 214-218. https://doi.org/10.1577/1548-8659(1965)94[214:AMFETP]2.0.CO;2
  37. Ryder, R.A. 1982. The morphoedaphic index-use, abuse, and fundamental concepts. Transactions of the American Fisheries Society 111: 154-164. https://doi.org/10.1577/1548-8659(1982)111<154:TMIAAF>2.0.CO;2
  38. Ryder, R.A., S.R. Kerr, K.H. Loftus and H.A. Regier. 1974. The morphoedaphic index, a fish yield estimator-review and evaluation. Journal of the Fisheries Research Board of Canada 31: 663-688. https://doi.org/10.1139/f74-097
  39. Seo, J. 2005. Fish fauna and ecological characteristics of dark chub (Zacco temminckii) population in the mid-upper region of Gam Stream. Korean Journal of Limnology 38(2): 196-206.
  40. US EPA. 1991. Technical support document for water quality- based toxic control. EPA 505-2-90-001. US. EPA, Office of Water, Washington D.C., USA.
  41. US EPA. 1998. Lake and Reservoir Bioassessment and Biocriteria. EPA 841-B-98-007. US. EPA, Office of Water, Washington, D.C., USA.
  42. Yang, H.J., B.S. Chae and M.M. Nam. 1991. Articles: The ichthyofauna in autumn at upper reach of Hongchon River. Korean Journal of Limnology 24(1): 37-44.