DOI QR코드

DOI QR Code

Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems

발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구

  • 신정환 (한국항공대학교 항공우주 및 기계공학과 대학원) ;
  • 이인철 (한국항공대학교 항공우주 및 기계공학과 대학원) ;
  • 김희동 (국립안동대학교 기계공학과) ;
  • 구자예 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2012.04.23
  • Accepted : 2012.06.13
  • Published : 2012.06.30

Abstract

The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

Keywords

References

  1. D. C. Jenkins, "Erosion of Surfaces by Liquid Drops", Nature, Vol. 176, 1955, pp. 303-304. https://doi.org/10.1038/176303a0
  2. Labus and T. J., "Cutting and Drilling of Composites Using High Pressure Water Jets", Fourth International Symposium on Jet Cutting Technology, BHRA Fluid Engineering, Paper G2, 1978, pp. G2-9.
  3. Cooley and W. C., "Survey of Water Jet Coal Mining Technology", Third International Symposium on Jet Cutting Technology, Paper D1, 1976, pp. D1-1.
  4. 엄동섭, 고동균, 나완용, 이성욱, "커먼레일 디젤기관 에서 분사전략에 따른 성능 및 배출가스에 관한 연구", 한국액체미립화학회지 제16권, 제3호, 2011, pp. 134-139.
  5. K. Pianthong, K. Takayama, B. E. Milton and M. Behnia, "Multiple Pulsed Hypersonic Liquid disel Fuel Jets Driven by Projectile Impact", Shock Waves, Digital Object Identifier (DOI) 10.1007/s00193-004-0237-2, 2005, pp. 73-82.
  6. Hong-Hui Shi and K. Takayama, "Generation of Hypersonic Liquid Fuel Jets Accompanying Selfcombustion", Shock Waves, Digital Object Identifier (DOI) 10.1007/s001930050193, 1999, pp. 327-332.
  7. Sanghoon Kook and Lyle M. Pickett, "Effect of Ambient Temperature and Density on Shock Wave Generation in a Diesel Engine", Atomization and Sprays, 20(2), 2010, pp. 163-175. https://doi.org/10.1615/AtomizSpr.v20.i2.50
  8. Hong-Hui Shi, K. Higashiura and M. Itoh, "Generation of Hypervelocity Liquid Jets Using a Powder Gun and Impact Experiment", Transaction of the Japan Society for Aeronautical and Space Science, Vol. 42, no. 135, 1999, pp. 9-18.
  9. J. E. Field and M. B. Lesser, "On the Mechanics of High Speed Liquid Jets", Proceedings Royal Society London, A series, Vol. 357, 1977, pp. 143-162.
  10. F. P. Bowden and J. H. Brunton, "Damage to solids by liquid impact at supersonic speeds", Nature, Vol. 181, no. 4613, 1958, pp. 873-875. https://doi.org/10.1038/181873a0
  11. J. D. O'Keefe, W. W. Wrinkle and C. N. Scully, "Supersonic Liquid Jets", Nature, Vol. 213, 1967, pp. 23-25. https://doi.org/10.1038/213023a0
  12. A. Matthujak, K. Pianthong, M. Sun and K. Takayama, "Effect of Impact-Generated Shock Wave in a Nozzle on the Multiple Pulse Jet Formation", The 21st Conference of Mechanical Engineering Network of Thailand, TSF-18, 2007, pp. 111-118.
  13. W. Sittiwong, K. Pianthong, W. Seehanam, B. E. Milton and K. Takayama, "Effects of Chamber Temperature and Pressure on the Characteristics of High Speed Diesel Jets," Shock Waves, Digital Object Identifier (DOI) 10.1007/s00193-012-0364-0, 2012, pp. 215-223.
  14. H.-H. Shi and K. Higashiura, "Generation of High- Speed Liquid Jets by High-Speed Impact of a Projectile," JSME International Journal, Series B, Vol. 38, No. 2, 1995, pp. 181-190. https://doi.org/10.1299/jsmeb.38.181
  15. A. Matthujak, K. Pianthong, M. Sun and K. Takayama, "Experimental study of Impact-Generated High-Speed Liquid Jet," The 21st Conference of Mechanical Engineering Network of Thailand, TSF-17, 2007, pp. 103-110.
  16. 신정환, 이인철, 구자예, 김희동, "발사체 충돌에 의한 초음속 액체 제트의 분사 특성 및 유동가시화", 한국 가시화정보학회지, 제9권, 제2호, 2011, pp. 27-33.
  17. 김도헌, 신정환, 이인철, 구자예, "다공성재를 이용한 동축형 분사기의 미립화 특성", 한국액체미립화학회지, 제17권, 제1호, 2012, pp. 35-44.
  18. 이인철, 신정환, 구자예, 김희동, "초고속 발사체의 액 체 저장부 충돌에 의한 초음속 액체 제트의 분무 속 도 및 분열 특성", 한국가시화정보학회지, 제9권, 제1 호, 2011, pp. 55-60.
  19. K. Pianthong, S. Zakrzewski, M. Behnia and B. E. Milton, "Supersonic Liquid jets : Their Generation and Shock Wave Characteristics", Shock Waves, Digital Object Identifier (DOI) 10.1007/s001930200130, 2002, pp. 457-466.