DOI QR코드

DOI QR Code

그룹이동타겟 추적을 위한 무인차량기반의 자가이동 네트워크

Autonomous Unmanned Vehicle based Self-locomotion Network for Tracking Targets in Group Mobility

  • 웬티탐 (울산대학교 전기컴퓨터공학과) ;
  • 윤석훈 (울산대학교 전기공학부 컴퓨터정보통신전공)
  • 투고 : 2012.05.15
  • 심사 : 2012.07.13
  • 발행 : 2012.07.31

초록

본 논문은 다수의 자율무인차량 (Autonomous Unmanned Ground Vehicle) 들이 서로 협력하여 그룹 이동하는 타겟을 추적하고 지속적인 커버리지를 제공하는 무인차량 기반의 추적 네트워크 (UVTN: Unmanned Vehicle based Tracking Network) 구조와 알고리즘을 제안한다. UVTN은 움직이는 사람 또는 사물을 추적 감시하거나 이동하는 구조팀 또는 병사들에게 지속적인 네트워크 Access를 제공해 주기 위하여 커버리지를 최대화 하는 것을 목적으로 한다. 이러한 목적을 달성하기 위하여 UVTN은 주기적인 네트워크 확장과 수축 과정을 통한 무인차량 노드 재배치 및 네트워크 토폴로지 최적화를 수행한다. 또한 본 논문에서는 평균 커버리지비율과 이동거리 관점에서의 성능향상을 위한 개선 알고리즘들이 제안된다. 시뮬레이션을 통해 UVTN과 개선 알고리즘들이 그룹이 동성을 갖는 대상을 효율적으로 추적하여 지속적인 커버리지를 제공할 수 있음을 보인다.

In this paper, we propose unmanned vehicle based tracking network (UVTN) architecture and algorithms which employ multiple autonomous unmanned ground vehicles (AUGV) to efficiently follow targets in a group. The goal of UVTN is to maximize the service coverage while tracking target nodes for monitoring or providing the network access. In order to achieve this goal, UVTN performs periodic expansion and contraction which results in optimized redistribution of AUGV's in the network. Also, enhanced algorithms such as fast contraction and longest first are also discussed to improve the performance of UVTN in terms of the average coverage ratio and traveled distance. Simulation results show that the proposed UVTN and enhanced algorithms can effectively track the moving target and provide the consistent coverage.

키워드

참고문헌

  1. A. Khan, C. Qiao, and S. Tripathi, "A failure-tolerant mobile traversal scheme based on triangulation coverage," in Proceedings of International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (Qshine) and ICC 2007, Vancouver, Canada, August 2007.
  2. R. Ghabcheloo, A. Pascoal, C. Silvestre, and I. Kaminer, "Coordinated Path Following Control of Multiple Wheeled Robots Using Linearization Techniques," Int'l J. Systems Science, vol. 37, no.6, (pp. 399-414,) May 2005.
  3. X. Cui, T. Hardin, R.K Ragade, and A.A. Elmaghraby, "A Swarm-Based Fuzzy Logic Control Mobile Sensor Network for Hazardous Contaminants Localization," in Proc. IEEE Int'l Conf. Mobile Ad-hoc and Sensor Systems (MASS '04), 2004.
  4. H. Tanner, A. Jadbabaie, and G. Pappas, "Flocking in Fixed and Switching Networks," IEEE Trans. Automatic Control, vol.52, no.5, pp. 863-868, May 2007. https://doi.org/10.1109/TAC.2007.895948
  5. G. Wang, G. Cao, and T. L. Porta, "Movement-assisted sensor deployment," in IEEE INFOCOM Conference Proceedings, March 2004.
  6. J. Reich, V. Misra, and D. Rubenstein, "Roomba MADNet: a Mobile Ad-hoc Delay Tolerant Network Testbed," ACM MC2R, Jan 2008.
  7. P. De, A. Raniwala, S. Sharma, and T.cker Chiueh, "Mint: A miniaturized network testbed for mobile wireless research," in Proceedings of IEEE Infocom, 2005.
  8. Y. Yu and J. L.Rittle, "Utility-Driven Spatiotemporal Sampling in Mobile Sensor Networks," in Proc. IEEE INFOCOM '08, April 2008.
  9. S. Yoon, O. Soysal, M. Demirbas, and C. Qiao, "Coordinated Locomotion and Monitoring Using Autonomous Mobile Sensor Nodes," IEEE Transactions on Parallel and Distributed Systems, Vol. 22, No.10, October 2011.
  10. W. Li, J. Bao, and W. Shen, "Collaborative Wireless Sensor Network: A Survey," SMC IEEE International Conference, pp.2614-2619, October 2011.
  11. L. Zhang, L. Liu, C. Gotsman, and S. J. Gortler, "An As-Rigid-As-Possible Approach to Sensor Network Localization," ACM Transaction on Sensor Networks, Vol.6, No.4, Article 35, July 2010.
  12. M. Mudasser Iqbal, I. Gondal, and L. Dooley, "Dynamic Symmetrical Topology Models for Pervasive Sensor Networks," in Proceedings of the International Multi-topic Conference, Lahore, Pakistan, pp. 466 - 472, December 2004.
  13. D. B. Johnson and D. A. Maltz, "Dynamic source routing an ad hoc wireless networks," Mobile Computing, Kluwer Academic Publishers, 353, 1996.
  14. B. Liang and Z. J. Haas, "Predictive distance-based mobility management for multidimensional PCS networks," IEEE/ACM Transaction on Networking, 11(5), 2003.
  15. X. Hong, M. Gerla, G. Pei, and C. Chiang, "A group mobility model for ad hoc wireless networks," in Proceedings of the ACM International Workshop on Modeling and Simulation of Wireless and Mobile Systems (MSWiM), August 1999.
  16. M. Sanchez and P. Manzoni,"Anejos: A java based simulation for ad-hoc networks," Future Generation Computer Systems, 2001.
  17. M. Rahimi, H. Varaiya, G.Sukhatme, J. Heidemann, and D. Estrin, "Studying the Feasibility of Energy Harvesting in a Mobile Sensor Network," in Proc. IEEE Int'l Conf. Robotics and Automation, pp. 19-24, 2003.