DOI QR코드

DOI QR Code

자동차 간 통신에서 비컨 메시지의 효율적인 방송을 위한 성능 분석

An Analysis for the Efficient Dissemination of Beacon Messages in Vehicle-to-Vehicle (V2V) Communications

  • 투고 : 2012.04.27
  • 심사 : 2012.05.21
  • 발행 : 2012.06.30

초록

자동차 간 (Vehicle-to-Vehicle) 통신에서, 각각의 자동차들은 위치, 속도, 조향 등의 정보를 포함하는 비컨 메시지를 주변의 자동차들에게 주기적으로 방송함으로써, 이들로 하여금 자신의 주행 정보를 인지할 수 있도록 한다. 그런데, 단순한 비컨 메시지의 방송은 메시지 수신 확률을 감소시키고 지연 시간을 크게 증가시키는 원인이 된다. 따라서, 본 논문에서는 비컨주기 (Beacon Period), 반송파감지거리 (Carrier-Sensing Range), 그리고 IEEE 802.11 DCF 졍쟁구간크기 (Contention Window Size)가 자동차 간 통신의 성능에 미치는 영향을 수학적으로 분석하고자 한다. 우선, 측위 오차의 임계값으로부터 자동차 운전 속도에 반비례하는 비컨주기를 도출하고, 이를 기반으로 비컨 메시지로 인한 DSRC 채널의 최대 부하를 수학적으로 유도한다. 비컨 메시지의 부하가 특정 임계치 이하가 되도록 반송파감지거리를 결정하는 수학적 모형을 유도하고, 수율을 최대화하는 DCF 경쟁구간크기에 대한 닫힌 근사해를 제시한다.

In vehicle-to-vehicle (V2V) communications, each vehicle should periodically disseminate a beacon message including the kinematics information, such as position, speed, steering, etc., so that a neighbor vehicle can better perceive and predict the movement of the vehicle. However, a simple broadcasting of such messages may lead to a low reception probability as well as an excessive delay. In this paper, we attempt to analyze the impact of the following key parameters of the beacon dissemination on the performance of vehicular networks: beacon period, carrier-sensing range, and contention window (CW) size. We first derive a beacon period which is inversely proportional to the vehicle speed. Next, we mathematically formulate the maximum beacon load to demonstrate the necessity of the transmit power control. We finally present an approximate closed-form solution of the optimal CW size that leads to the maximum throughput of beacon messages in vehicular networks.

키워드

참고문헌

  1. "Vehicle safety communications project, task 3 final report: Identify intelligent vehicle safety applications enabled by DSRC," Nat. Highway Traffic Safety Admin., Washington, D.C., 2005.
  2. IEEE Computer Society, "IEEE standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 6: Wireless access in vehicular environments," IEEE Std 802.11p-2010, 2010.
  3. IEEE Vehicular Technology Society, "IEEE standard for wireless access in vehicular environments (WAVE). Multi-channel operation," IEEE Std 1609.4-2010, 2010.
  4. SAE International, "DSRC implementation guide: A guide to users of SAE J2735 message sets over DSRC," online available: http://www.sae.org/standardsdev/dsrc/DSRCImplementa- tionGuide.pdf, Feb. 2010.
  5. A. Boukerche, C. Rezende, R. W. Pazzi, "Improving neighbor localization in vehicular ad-hoc networks to avoid overhead from periodic messages," Proc. IEEE GLOBECOM 2009, Dec. 2009.
  6. M. Torrent-Moreno, J. Mittag, P. Santi, and H. Hartenstein, "Vehicle-to-vehicle communication: fair transmit power control for safety-critical information," IEEE Trans. on Vehicular Techno., vol. 58, no. 7, pp. 3684-3703, Aug. 2009. https://doi.org/10.1109/TVT.2009.2017545
  7. R. Reinders, M. V. Eenennaam, G. Karagiannis, G. Heijenk, "Contention window analysis for beaconing in VANETs," International Wireless Communications and Mobile Computing Conference (IWCMC 2011), pp. 1481-1487, Aug. 2011.
  8. C. L. Huang, Y. P. Fallah, R. Sengupta, and H. Krishman, "Adaptive intervehicle communication control for cooperative safety systems," IEEE Network, vol. 24, no. 1, pp. 6-13, Jan. 2010.
  9. Y. P. Fallah, C. L. Huang, R. Sengupta, and H. Krishman, "Analysis of information dissemination in vehicular ad-hoc networks with application to cooperative vehicular safety systems," IEEE Trans on Vehicular Techno., vol. 60, no. 1, pp. 233-247, Jan. 2010.
  10. L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, "Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band," IEEE J. Selected Areas in Commun., vol. 25, no. 8, pp. 1501-1516, Oct. 2007. https://doi.org/10.1109/JSAC.2007.071002
  11. IEEE Computer Society, "IEEE standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications," IEEE Std 802.11-2007, 2007.
  12. E. Abbott and D. Powell, "Land-vehicle navigation using GPS," Proc. of the IEEE, vol. 87, no. 1, pp. 145-162, Jan. 1999. https://doi.org/10.1109/5.736347

피인용 문헌

  1. WAVE System Performance for Platooning Vehicle Service Requirements Under Highway Environments vol.16, pp.1, 2017, https://doi.org/10.12815/kits.2017.16.1.147