초록
자동차 간 (Vehicle-to-Vehicle) 통신에서, 각각의 자동차들은 위치, 속도, 조향 등의 정보를 포함하는 비컨 메시지를 주변의 자동차들에게 주기적으로 방송함으로써, 이들로 하여금 자신의 주행 정보를 인지할 수 있도록 한다. 그런데, 단순한 비컨 메시지의 방송은 메시지 수신 확률을 감소시키고 지연 시간을 크게 증가시키는 원인이 된다. 따라서, 본 논문에서는 비컨주기 (Beacon Period), 반송파감지거리 (Carrier-Sensing Range), 그리고 IEEE 802.11 DCF 졍쟁구간크기 (Contention Window Size)가 자동차 간 통신의 성능에 미치는 영향을 수학적으로 분석하고자 한다. 우선, 측위 오차의 임계값으로부터 자동차 운전 속도에 반비례하는 비컨주기를 도출하고, 이를 기반으로 비컨 메시지로 인한 DSRC 채널의 최대 부하를 수학적으로 유도한다. 비컨 메시지의 부하가 특정 임계치 이하가 되도록 반송파감지거리를 결정하는 수학적 모형을 유도하고, 수율을 최대화하는 DCF 경쟁구간크기에 대한 닫힌 근사해를 제시한다.
In vehicle-to-vehicle (V2V) communications, each vehicle should periodically disseminate a beacon message including the kinematics information, such as position, speed, steering, etc., so that a neighbor vehicle can better perceive and predict the movement of the vehicle. However, a simple broadcasting of such messages may lead to a low reception probability as well as an excessive delay. In this paper, we attempt to analyze the impact of the following key parameters of the beacon dissemination on the performance of vehicular networks: beacon period, carrier-sensing range, and contention window (CW) size. We first derive a beacon period which is inversely proportional to the vehicle speed. Next, we mathematically formulate the maximum beacon load to demonstrate the necessity of the transmit power control. We finally present an approximate closed-form solution of the optimal CW size that leads to the maximum throughput of beacon messages in vehicular networks.