DOI QR코드

DOI QR Code

Analysis of CRC-p Code Performance and Determination of Optimal CRC Code for VHF Band Maritime Ad-hoc Wireless Communication

CRC-p 코드 성능분석 및 VHF 대역 해양 ad-hoc 무선 통신용 최적 CRC 코드의 결정

  • 차유강 (호서대학교 시스템제어공학과 신호 및 영상처리 연구실) ;
  • 정차근 (호서대학교 시스템제어공학과 신호 및 영상처리 연구실)
  • Received : 2012.01.30
  • Accepted : 2012.05.23
  • Published : 2012.06.30

Abstract

This paper presents new CRC-p codes for VHF band maritime wireless communication system based on performance analysis of various CRC codes. For this purpose, we firstly describe the method of determination of undetected error probability and minimum Hamming distance according to variation of CRC codeword length. By using the fact that the dual code of cyclic Hamming code and primitive BCH code become maximum length codes, we present an algorithm for computation of undetected error probability and minimum Hamming distance where the concept of simple hardware that is consisted of linear feedback shift register is utilized to compute the weight distribution of CRC codes. We also present construction of transmit data frame of VHF band maritime wireless communication system and specification of major communication parameters. Finally, new optimal CRC-p codes are presented based on the simulation results of undetected error probability and minimum Hamming distance using the various generator polynomials of CRC codes, and their performances are evaluated with simulation results of bit error rate based on the Rician maritime channel model and ${\pi}$/4-DQPSK modulator.

본 논문에서는 다양한 CRC 코드의 성능분석을 기반으로 새로운 VHF 대역 해양 무선통신용 최적 CRC-p 코드를 제안한다. 이를 위해, 먼저 CRC 코드의 부호어 길이의 변화에 따른 미검출 오류확률과 최소해밍거리를 구하는 방법을 기술한다. 즉 순회 해밍코드나 원시 BCH 코드의 쌍대코드가 최대장 코드가 되는 것을 이용해서 천이 레지스터에 의한 간단한 회로구성으로 무게분포와 미검출 오류확률을 계산하는 방법과 MacWilliam의 항등식에 의한 최소해밍거리를 계산하는 방법을 제시한다. 다음으로 VHF 대역 해양 무선통신 시스템의 전송 프레임의 구성과 주요 통신 파라미터의 규격을 제시하고, 기존의 연구된 다양한 CRC 코드의 생성다항식을 대상으로 미검출 오류확률과 최소해밍거리의 결과를 기반으로 새로운 CRC-p 코드를 선정하고, 라이시안 해양 채널모델과 ${\pi}$/4-DQPSK 변복조기에 의한 비트오류율(BER)의 모의실험 결과를 통해 성능을 검증한다.

Keywords

References

  1. K. A. Witzke and C. Leung, "A comparison of some error detecting CRC code standards," IEEE Trans. Communications, vol. COM-33, no. 9, pp. 996-998, Sept. 1985.
  2. Tohru Fujiwara, Tadao Kasami, and Shu Lin, "Error detecting capabilities of the shortened Hamming codes adopted for error detection in IEEE standard 802.3," IEEE Trans. Communications, vol. COM-37, no. 9, pp. 986-989, Sept. 1989.
  3. Guy Castagnoli, Stefan Brauer, and Martin Herrmann, "Optimization of cyclic redundancy-check codes with 24 and 32 parity bits," IEEE Trans. Communications, vol. 41, no. 6, pp. 883-892, June 1993. https://doi.org/10.1109/26.231911
  4. Guy Castagnoli, Jurg Ganz, and Patrick Graber, "Optimum cyclic-check codes with 16-bit redundancy," IEEE Trans. Communications, vol. 38, no. 1, pp. 111-114, Jan. 1990. https://doi.org/10.1109/26.46536
  5. Namgi Kim, "Variable CRC scheme for efficient data transmission control for IEEE 802.16e wireless network," Korean Institute of Information Technology(Ki-iT), vol. 7, no. 3, pp. 109-115, 2009. 06.
  6. Shu Lin and Daniel J. Costello, Error Control Coding, 2nd ed., Prentice Hall, 2004.
  7. Tohru Fujiwara, Tadao Kasami, Atsushi Kitai, and Shu Lin, "On the undetected error probability for shortened Hamming codes," IEEE Trans. Communications, vol. COM-33, no. 6, pp. 570-574, June 1985.
  8. Phillip Merkey and Edward C. Posner, "Optimum cyclic redundancy codes for noisy channel," IEEE Trans. Information Theory, vol. IT-30, no. 6, pp. 865-867, Nov. 1984.
  9. G. Funk, "Determination of best shortened linear codes," IEEE Trans. Communications, vol. 44, no. 1, pp. 1-6, Jan. 1996.
  10. Peter Kazakov, "Fast calculation of the number of minimum weight words of CRC codes," IEEE Trans. Information Theory, vol. 47, no. 3, pp. 1190-1195, March 2001. https://doi.org/10.1109/18.915680
  11. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, 1977.
  12. T. Baicheve, S. Dodunekov and P. Kazakov, "Undetected error probability performance of cyclic redundancy-check codes of 16-bit redundancy," IEE Proceeding Communications, vol. 147, no. 5, pp. 253-256, Oct. 2000. https://doi.org/10.1049/ip-com:20000649
  13. Tenkasi V. Ramabadran and Sunil S. Gaitonde, "A tutorial on CRC computations," IEEE Micro, vol. 8, no. 4, pp.562-74, August 1988.
  14. Dexter Chun and Jack Keil Wolf, "Special hardware for computing the probability of undetected error for certain binary CRC codes and test results," IEEE Trans. Communications, vol. 42, no. 10, pp. 2769-2772, Oct. 1994. https://doi.org/10.1109/26.328943
  15. Vladimir I. Levenshtein, "Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces," IEEE Trans. Information Theory, vol. 41, no. 5, pp. 1303-1321, Sept. 1995. https://doi.org/10.1109/18.412678
  16. Philip Koopman and Tridib Chakravarty, "Cyclic redundancy code (CRC) polynomial selection for embedded networks," The International Conference on Dependable Systems and Networks (DSN-2004), June 2004.
  17. YoungBum Kim, KyungHi Chang, Changho Yun, Jong-Won Park, and Yong-Kon Lim, "Application scenarios of nautical ad-hoc network in wireless mobile communication under maritime environment," Korean Institute of Information and Commun. Eng., vol. 13, no. 10, pp. 2097-2104, 2009. 10.
  18. You-Gang Cha, and Cha-Keon Cheong, "Optimal CRC code selection based on minimum Hamming distance and undetectable error probability according to variable codeword length," Proceeding of the 2011 Korea Signal Processing Conference, pp.403-406, 2011. 09.