DOI QR코드

DOI QR Code

Fast Construction of Three Dimensional Steiner Minimum Tree Using PTAS

PTAS를 이용한 3차원 스타이너 최소트리의 신속한 구성

  • Kim, In-Bum (Dept. of Internet Information, Kimpo College)
  • Received : 2012.04.10
  • Accepted : 2012.06.12
  • Published : 2012.07.31

Abstract

In this paper, PTAS three-dimensional Steiner minimum tree connecting numerous input nodes rapidly in 3D space is proposed. Steiner minimum tree problem belongs to NP problem domain, and when properly devised heuristic introduces, it is generally superior to other algorithms as minimum spanning tree affiliated with P problem domain. But when the number of input nodes is very large, the problem requires excessive execution time. In this paper, a method using PTAS is proposed to solve the difficulty. In experiments for 70,000 input nodes in 3D space, the tree produced by the proposed 8 space partitioned PTAS method reduced 86.88% execution time, compared with the tree by naive 3D steiner minimum tree method, though increased 0.81% tree length. This affirms the proposed method can work well for applications that many nodes of three dimensions are need to connect swifty, enduring slight increase of tree length.

본 논문에서는 3차원 공간상에 존재하는 많은 입력노드를 신속하게 연결하는 PTAS 3차원 스타이너 최소트리를 제안한다. 스타이너 최소트리문제는 비 다항 적 문제 영역에 속하며 적절한 휴리스틱을 도입했을 경우 다항 적 문제 영역에서 최단 길이의 해를 생성하는 최소신장트리 방법과 같은 여러 방법에 비해 우수한 성능을 보이나, 입력노드의 수가 클 경우 과도한 실행시간을 요구한다. 본 논문에서는 이 문제를 해결하기 위해 PTAS 기법을 도입한 방법을 제안한다. 3차원 공간상에 존재하는 70,000개의 입력 노드에 대한 실험에서, 본 논문에서 제안된 8개 공간 분할 PTAS 방법은, 순수 3차원 스타이너 최소트리방법에 비해 연결 길이는 0.81% 증가했으나, 실행시간은 86.88%의 단축되었다. 이는 제안된 방법이 시간적 제약이 비교적 큰 문제에서 공간상의 많은 노드들을 신속하게 연결하는 응용에 잘 적용될 수 있음을 나타낸다.

Keywords

References

  1. G. Xue, G. Lin and D.Z. Du, "Grade of Service Steiner Minimum Trees in Euclidean Plane," Algorithmica, Vol.31, pp.479-500, 2001 https://doi.org/10.1007/s00453-001-0050-6
  2. http://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme, March 2012
  3. N. Halman, D. Klabjan, M. Mostagir, J. Orlin and D. SimchiLevi, "A Fully Polynomial-Time Approximation Scheme for Single-Item Stochastic Inventory Control with Discrete Demand," Journal of Mathematics of Operations Research Vol.34, No.3, pp.674-685, 2009 https://doi.org/10.1287/moor.1090.0391
  4. X. Zhang, S. Velde, "Polynomial Time Approximation Schemes for Scheduling Problems with Time Lags," Journal of Scheduling, Vol.13, No.5, pp.553-559, 2010 https://doi.org/10.1007/s10951-009-0134-8
  5. A. Das and C. Mathieu, "A Quasi-polynomial Time Approximation Scheme for Euclidean Capacitated Vehicle Routing," Proceeding of SODA '10 Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics, pp.390-403, Austin, USA, 2010
  6. J. Huang and Y. Tanak, "QoS routing algorithms using fully polynomial time approximation scheme," Proceeding IWQoS '11 Proceedings of the IEEE 19th International Workshop on Quality of Service, pp.1-3, 2011
  7. C. Stanton and J. Smith, "Steiner Trees and 3-D Macromolecular Conformation," INFORMS Journal on Computing, Vol.16, No.4 pp.470-485, Fall 2004 https://doi.org/10.1287/ijoc.1040.0101
  8. J. Yan, Z. Chen and D. Hu, "Timing-driven Steiner tree construction for three-dimensional ICs," Proceeding of Circuits and Systems and TAISA Conference NEWCAS-TAISA, pp.335-338, June, 2008
  9. M. Pathak, and S. Lim, "Thermal-aware Steiner routing for 3D stacked ICs," Proceeding of ICCAD '07 Proceedings of the 2007 IEEE/ACM international conference on Computer-aided design, pp.205-211, 2007
  10. T.H. Cormen, C.E Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms," 2nd Ed., THe MIT Press, pp.561-579, 2001
  11. I. Kim, "Efficient Construction of Large Scale Grade of Services Steiner Tree Using Space Locality and Polynomial-Time Approximation Scheme", Journal of the Korea Society of Computer and Information, Vol.16, No.11, pp.153-161, 2011 https://doi.org/10.9708/jksci.2011.16.11.153