Time Stretched Pulse를 이용한 무향실 자유음장 분석

Analysis of free field for Acoustic Anechoic Chamber based on Time Stretched Pulse

  • 김건욱 (동국대학교 전자전기공학부)
  • Kim, Keon-Wook (Division of Electronics and Electrical Engineering, Dongguk University)
  • 투고 : 2012.01.05
  • 심사 : 2012.04.12
  • 발행 : 2012.07.25

초록

Time Stretched Pulse (TSP)는 공간적으로 임펄스(Impulse)를 효율적으로 전달하고 분석하기 위해서 사용되어 진다. 하지만 발신기와 수신기의 전달함수를 포함시키지 않으면, 시간 영역에서의 분석은 직, 간접 신호의 중첩으로 공간의 자유음장 특성을 파악하기 불가능하다. 일반적으로 공간의 자유음장(Free Field)은 표준 ISO 3745 Annex A에 의해서 평가되고 있는데, 일정 주파수 간격의 1/3 옥타브 밴드 신호를 연속적으로 발신 및 수신하여 거리별 신호 감소를 역자승 법칙(Inverse Square Law)을 적용하여 판단하고 있다. 본 논문은 자유음장 분석에서 TSP 신호를 적용하여 일반적인 ISO 3745의 1/3 옥타브 밴드 신호와 비교하였다. 역자승 모델 값과의 차이점을 분석한 결과 TSP 신호 또한 1/3 옥타브 밴드 신호와 유사한 결과를 보이고 있으며, 측정 시간 및 확장성에 대해서는 우수하게 판단되었다. 본 실험에서는 ISO 3745에 의해서 제한된 주파수 범위에서 자유음장과 반자유음장(Hemi-free Field)을 검증 받은 무향실을 사용하였다.

Time Stretched Pulse (TSP) is used for transmitting and analyzing the impulse signal over the designated spatial place. However, if transfer functions of transmitter and receiver are unknown, performance investigation of free field in temporal domain is barely possible due to the overlap between the direct and indirect signal from the space. Generally, the free field or hemi-free field is evaluated by the Annex A of ISO 3745 in which utilizing the inverse square law with one-third octave band signals. In this paper, the author performs analysis of free field via applying TSP with inverse square law and the results are compared with the one-third octave band signals. According to the analysis of deviation between the corresponding signal and inverse square law model, the proposed TSP method provides the comparable performance index to the one-third octave band signal with reduced measuring time. Provided that the pre-whitening can be implementable by employing the speaker and microphone transfer function, further analyses from TSP compression are able to be performed such as multipath separation from time domain data. The anechoic chamber used in this experiment is verified conformance with ISO 3745 for free field and hemi-free field condition for limited frequency of the signal.

키워드

참고문헌

  1. A. J. Berkhout, D. de Vries, and M. M. Boone, "A new method to acquire impulse responses in concert halls," J. Acoust. Soc. Am., Vol. 68, pp. 179-183, 1980. https://doi.org/10.1121/1.384618
  2. N. Aoshima, "Computer-generated pulse signal applied for sound measurement," J. Acoust. Soc. Am., Vol. 69, pp. 1484-1488, 1981. https://doi.org/10.1121/1.385782
  3. Y. Suzuki, F. Asano, H. Y. Kim, and T. Sone, "An optimum computer-generated pulse signal suitable for the measurement of very long impulse responses," J. Acoust. Soc. Am., Vol. 97, pp. 1119-1123, 1995. https://doi.org/10.1121/1.412224
  4. D. D. Rife, and V. John, "Transfer-Function Measurement /w. Maximum-Length Sequences," J. Audio Eng. Soc., Vol 37, pp. 419-444, 1989.
  5. J. Schoukens, R. Pintelon, E. van der Ouderaa, and J. Renneboog, "Survey of excitation signals for FFT based signal analyzers," IEEE Trans. Instr. and Measur., Vol. 37, pp. 342-352, 1988. https://doi.org/10.1109/19.7453
  6. International Organization for Standardization, "Acoustics - Determination of sound power levels of noise sources using sound pressure - Precision methods for anechoic and hemi-anechoic rooms," ISO 3745, 2003.
  7. J. Wang, and B. Cai, "Calculation of free-field deviation in an anechoic room," J. Acoust. Soc. Am., Vol. 85, pp. 1206-1212, 1989. https://doi.org/10.1121/1.397451
  8. K. A. Cunefare, and et al. "Anechoic chamber qualification: traverse method, inverse square law analysis method, and nature of test signal," J. Acoust. Soc. Am., Vol. 113, pp. 881-892, 2003. https://doi.org/10.1121/1.1527595
  9. K. A. Cunefare, J. Badertscher, and V. Wittstock, "On the qualification of anechoic chambers; Issues related to signals and bandwidth," J. Acoust. Soc. Am., Vol. 120, pp. 820-829, 2006. https://doi.org/10.1121/1.2211467
  10. G. Alfageme, S. Bote, and B. Martin, "New measurement methods for anechoic chamber characterization," AES 124th Conv. Amsterdam, Holand, 2008.
  11. S. Schneider, "Numerical prediction of the quality of an anechoic chamber in the low frequency range," J Sound Vib., Vol. 320, pp. 990-1003, 2009. https://doi.org/10.1016/j.jsv.2008.08.019
  12. K. Kim, "Design and analysis of experimental anechoic chamber for localization," J. Acoust. Soc. Kor, Vol. 31, No. 4, pp. 225-234, 2012. https://doi.org/10.7776/ASK.2012.31.4.225
  13. Am. National Standards Institute, "Octave-Band and Fractional-Octave-Band Analog and Digital Filters," ANSI/ASA S111-2004(R2009), 2004.