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제조업의 주기성 시계열분석에서 힐버트 황 변환의 
효용성 평가
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Manufacturing Time Series Data with Periodic Components
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Real-life time series characteristic data has significant amount of non-stationary components, especially periodic components 
in nature. Extracting such components has required many ad-hoc techniques with external parameters set by users in case-by-case 
manner. In our study, we evaluate whether Hilbert-Huang Transform, a new tool of time-series analysis can be used for effective 
analysis of such data. It is divided into two points : 1) how effective it is in finding periodic components, 2) whether we can 
use its results directly in detecting values outside control limits, for which a traditional method such as ARIMA had been used. 
We use glass furnace temperature data to illustrate the method.
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1. Overview1)

Real-life time-series characteristic data tend to contain 
many levels of dynamics operating on different time-scales. 
That is, time-series can be an aggregation of components, 
whose rates of change can range from “very fast” to “very 
slow.” Slow changing ones tend to create a significant level 
of long-distance autocorrelation. A rather simple example is 
time-series data showing multiple periods of varying lengths. 
We need more than the ARIMA model to help address this 
problem. There have been many researches which attempted 
to address the presence of periodic components in time- 
series. They showed some limited success, but a more effec-
tive approach is needed.

2. Previous Research on Periodicity in 
Time-Series Data

Seasonality [1] is a periodic trend or fluctuation which 
frequently appears in time series. They could be well-defined 
and precise or merely semi-regular. It frequently shows up 
in economic data as a regular seasonal variation, hence the 
name ‘seasonality.’ However, such periodic fluctuations are 
common in data from various fields. The typical method to 
identify seasonality is as follows : (a) Run sequence plot 
(b) Seasonal subseries plot (c) Multiple box plots (d) Auto-
correlation plot (e) Seasonal index measures. These techni-
ques can be useful but they assume that periods of seasonal 
components are already known to us beforehand. It is not 
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an effective way to find out periods we are not aware of 
in advance. Besides, it is not systematic and tends to depend 
on visual inspection by humans.

Least-squares Spectral Analysis (LSSA) known as Vanicek 
Method, employs an iterative algorithm to find the best fit 
of sinusoids to time series data, using least squares method 
[15]. It goes as follows: Find a frequency from a preordered 
list of frequencies, which produces the best fit sinusoid for 
the data using least squares method. Then subtract the best 
fit sinusoid from the time series data, and make the new 
time series data. Repeat the same on this new data. Keep 
doing this until appropriate termination condition is met. 
LSSA addresses the shortcoming of FFT which tends to ex-
aggerate long-period noises in long-gapped times series data. 
Lomb and Scargle developed an improved version named 
“Lomb-Scargle method” [9, 13].

FFT and Wavelet analyses [2, 4, 6, 7] are the well-known 
techniques. They produce frequency amplitude chart from 
a given time series data. While FFT assumes that the major 
periodic components of time series data does not change in 
amplitude over the entire span of time series data, Wavelet 
assumes that such periodic components can change over time 
as can be observed in human voice spectrogram. So Wavelet 
analysis provides, 3-dimensional plot, made up of time, fre-
quency and amplitude. Wavelet resolved many difficulties 
arising from windowed FFT or other variation of FFT to 
capture slow change in major period (frequency) compo-
nents, that is, a spectral spectrum Wavelet algorithm is more 
efficient than FFT algorithm, but uses a crucial assumption 
that major frequencies tend to have exponentially sparse dis-
tribution, as we move to higher frequency region of overall 
frequency spectrum. It is not a significant drawback in real-
ity, because such distribution is commonplace among natural 
and man-made phenomena. Wavelet Transform is superior 
to any other methods described above including FFT. Never-
theless, Wavelet Transform requires threshold parameters for 
filters. In many cases, it is a crucial step to produce desirable 
Wavelet charts. Still, finding threshold values are mostly of 
ad-hoc nature, lacking any systematic method. Furthermore, 
frequency distribution is preset (in an exponentially sparse 
fashion) and amplitudes are calculated on those frequencies. 
In technical term, such a frequency distribution is called a 
priori basis. It does not have a basis which adapts itself to 
a given time-series. Wavelet Transform can deal with non- 
stationary data but not non-linear data.

3. Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) [5, 9, 10, 11, 14] 
is a method which can analyze time series data and split 
it into multiple oscillatory components, called Intrinsic Mode 
Functions (IMF). The result is superior to any comparable 
techniques, especially for non-stationary and nonlinear time 
series. Oscillations in time series frequently exhibit in-
tra-wave frequency modulation, which does not conform to 
typical sinusoidal shape. This is typical of oscillatory behav-
ior from highly non-linear systems. Fourier transform (or 
wavelet transform) tends to destroy essential feature of such 
pattern, while  Hilbert-Huang transform can capture it rather 
effectively. On the other hand, unlike Fourier analysis, 
Hilbert-Huang transform was not derived from pre-existing 
mathematical theory. It is more of an empirically conceived 
algorithm, whose effectiveness has been shown by applying 
it to time series data from various fields. It makes use of 
iterative procedure in which the component (IMF) of highest 
frequency was computed and subtracted out and proceed to 
isolate the component (IMF) of lower and lower frequency. 
The procedure is called Empirical Mode Decomposition 
(EMD) method. The rough description of Hilbert-Huang 
Transform is in the below [9].

(1) Find all local maxima in the entire data set, and com-
pute their envelope curve using cubic-spline lines.

(2) Do the same for local minima.
(3) Find the mean curve 

 from the two envelope 
curves. 

(4) Define 
  



(5) For two successive zero crossings, do steps (1) and (2)
(6) do (3) and get 



(7) Define 
  

 


(8) Continue steps (5)~(7) until 
 becomes nearly a 

constant value.
(9) Then   

 is the first IMF.
(10)  
(11) Take   in place of   and repeat steps (1) ~ 

(10) to generate   and    .
(12) repeat it until   becomes a monotone function 

which cannot generate IMF any further.

Then   




. 
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 <Figure 2> Lorenz Oscillator Time-series Data and its 

Power Spectrum

<Figure 3> IMFʼs of the Above Time-series Data and Corres

ponding Power Spectrums

<Figure 1> Empirical Decomposition Process

 is now decomposed into  empirical modes. <Figure 1> 
shows how steps (1)~(4) are done. The sample result of EMD 
is shown in <Figure 2>~<Figure 3>.

<Figure 2> shows a sample curve(top) and its power spec-
trum(bottom). EMD produces IMF’s on the left side in <Figure 
3> The right-side of <Figure 3> shows power spectrum of 
each IMF. Each IMF has a power spectrum concentrated 
around a single major frequency unlike the original curve 
with more spread-out power spectrum. In short, EMD decom-
poses the original curve into curves in different frequency 
bands. This process is adaptive in that the decomposition 
interval is not defined a priori as in FFT and Wavelet Theory. 
It can produce better results in that sense. It should be noted 
that power spectrum of each IMF could be complicated. Some 
has no discernible major frequencies, while others have a 
few. Some peaks are sharp, while others are more spread-out 
and look more ambiguous. 

Given a signal function   is complex conjugate   
can be computed by Hilbert Transform such that

   ∫∞∞ 


, 

where PV is a principal value of singular integral.
Then analytic signal is defined as : 

    

where    and    


Here,   is the instantaneous amplitude, and   
  is the instantaneous frequency. Let   be the power 
spectrum of  . For each IMF  , we have,    . 
Each shows important aspect of IMF  .

4. Evaluation of HHT’s Efficacy

<Figure 4> shows a sample time-series of temperature 
readings from a manufacturing process [3]. It was collected 
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<Figure 4> Time-series Data of Temperature from a Manufacturing Process

<Figure 5> Left : IMF1~IMF4(top to bottom), Right : IMF5~IMF8(top to bottom)

at each minute and spans over an entire month. Such manu-
facturing time-series contain stochastic component. It has 
been frequently the practice that we treat the time-series as 
essentially stochastic and other deterministic components are 
merely an impediment to be factored out at a preprocessing 
stage in order to apply well-known stochastic analyses. How-
ever, in numerous time-series data, that is not the case. Deter-
ministic component, especially periodic or pseudo-periodic 
oscillatory components, are essential part of the time-series 
providing us with insight into the nature of time-series we 
want to analyze. How to separate stochastic and deterministic 
components is a matter of important concern. 

First we want to find the dominant periodic frequencies 
in time-series. Many of methods discussed in previous section 
can be used, but they all have certain limitations. Empirical 
Mode Decomposition (EMD) produces IMF’s of different time- 
scales. In <Figure 5>, we can see the first 8 IMF’s of the 
above time-series. Each IMF occupies a narrow band of fre-
quency region. It would produce power spectrum peaking 

around a dominant frequency. These peak frequencies can 
represent dominant frequencies of original time-series. The 
typical example is seen in <Figure 2> and <Figure 3>. For 
each IMF, its corresponding power spectrum is shown on 
the right. It shows a peak around a certain frequency. A 
periodic component is made from this frequency. Such periodic 
components can be derived from all IMF’s. <Figure 6>~ 
<Figure 9> show IMF1, IMF2, IMF7, and IMF10 and their 
power spectrums (in log-log scale,) instantaneous amplitudes, 
and instantaneous frequencies (henceforth name IA and IF 
respectively). (a) shows an IMF and (b), its power spectrum. 
The power spectrum of IMF1 (<Figure 6>(b)) shows that 
IMF1 is random noise. <Figure 7>(b) shows that while IMF2 
has random noise, it also has clear sharp peaks. The highest 
peak is the dominant frequency and other sharp peaks related 
companion frequencies, typically integer multiple (2, 3) or 
simple fraction(1/2, 1/3) of the highest peak. This peak corre-
sponds to a pre-designed cyclic mechanical operation. That 
is why it is so sharp.
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(b)

(a)

(d)

(c)

<Figure 6> (a) IMF :   (b) Power Spectrum :   

(c) Instantaneous Amplitude :  

(d) Instantaneous Frequency :  

(a)

(b)

(c)

(d)

<Figure 7> (a) IMF :   (b) Power Spectrum : 

(c) Instantaneous Amplitude :  

(d) Instantaneous Frequency :  

(a)

(b)

(c)

(d)

<Figure 8> (a) IMF:   (b) Power Spectrum : 

(c) Instantaneous Amplitude :   

(d) Instantaneous Frequency :  

(a)

(b)

(c)

(d)

<Figure 9> (a) IMF :   (b) Power Spectrum : 

(c) Instantaneous Amplitude :  

(d) Instantaneous Frequency :  
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<Figure 10> Left : IMF5~8 (Top to Bottom), Right : Corresponding Instantaneous Amplitude 

<Figure 8>(a) shows IMF7 which corresponds to daily 
temperature cycle. Since daily temperature change is not a 
exact cyclic pattern, its power spectrum in <Figure 8>(b) 
shows less pronounced smooth peak. <Figure 9>(a) shows 
IMF10 which has long periods. However, since there are 
only small number of oscillations in the graph, less con-
fidence may be given to its dominant frequency. 

By using least-squares method, best-fit linear sum made 
up of such periodic components can be calculated and we 
can use it as periodic component of entire time-series. After 
the periodic component is subtracted from the original 
time-series, the remaining component can be regarded as 
purely stochastic and ARIMA analysis can be applied.

There is another method we can consider. Hilbert-Huang 
transform provides us with IMF’s, each representing a com-
ponent of different time-scale. While stochastic components 
could be spread into various IMF’s, the one with shorter 
time-scale can contain most of stochastic components.  It 
is not difficult to see that, as time-scale becomes longer, there 
tend to be higher long-distance autocorrelation. By its nature, 
random values go up and down at each time-step even in 
ARIMA. This leads to shorter time-scale and mostly captured 
in IMF’s with very short time-scale. That is, we can note 
that the share of stochastic elements in IMF steadily de-
creases as IMF’s time-scale gets longer. Hence, this enables 
us to use IMF’s directly to detect aberrant data outside con-
trol limits. We can set up control limits of shorter time-scale 
IMF’s in the same way we do with ARIMA model such 
as using 3-  boundary. Since stochastic nature disappears 
as time-scale becomes longer, IMF’s of longer time-scale 

may need different criteria for detecting values outside con-
trol limits. Tighter control limit could be necessary. A perfect 
sine function     has all its values staying in 2-  
boundary. In many cases, values stay well within 2-  
boundary. It could be reasonable that  control limits for lon-
ger time-scale IMF’s should be 2~2.5-  boundary(note: This 
is tentative suggestion which requires more empirical 
investigation.) Each IMF can now have its own control limit 
calculated from its values. This produces control chart for 
each IMF. Some IMF’s values are all within their control 
limits while others are out of theirs.  This provides an addi-
tional useful perspective on aberrant event in time-series. 
That is, the time-scale of  event outside control limits. If 
it is a sharp burst in a single time step, it can be captured 
in IMF of shortest time-scale. If such outside-limit behavior 
persists over longer duration, it will show up in IMF’s of 
longer time-scale as well. In <Figure 5>, aberrant event is 
detected clearly in IMF 5~6, and less so in IMF7. So we 
can give a proper time-scale for aberrant event which pushes 
values outside control limits: whether is a short-term or lon-
ger-term event. Additionally, we can see that aberrant event 
can be usually caught in multiple IMF’s

There are two other charts derived from each IMF,  , 
IA and  , IF.   tracks amplitude of oscillation from 
moment-to-moment while   tracks its frequency. As for 
detecting aberrant values, <Figure 10> shows   can detect 
it more clearly than IMF’s value itself, especially in the case 
of IMF8. Interaction between   and   can sometimes 
obscure amplitude of aberrant values.(as can be seen in the 
diagram) Hence, we can conclude that   of each IMF 
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can be better at detecting aberrant event than IMF itself.
Finally,   can detect sudden change of frequency in 

an IMF. Sudden increase of   could mean increased 
volatility. Any sudden change can be viewed as a signal that 
there is a problem. In our case of temperature time-series, 
  does not add useful insight because we cannot detect 
any sustained change of frequency. Sudden burst of instanta-
neous frequency tends to be noise in our study. 

5. Conclusion

We have evaluated how useful the results from HHT can 
be. Since EMD decomposes HHT into IMF’s, which are es-
sentially oscillatory curves in narrow frequency band, it helps 
identify dominant frequencies of original time-series by find-
ing dominant frequency of each IMF and, if necessary, its 
companion frequencies. In finding aberrant values which are 
outside control limits, we examined how IMF’s, IA’s, and 
IF’s can be used. It turns out that IA is better at detecting 
the aberrant values than IMF itself, while IF is not useful. 
Since there are multiple IMF’s, we can set up control limit 
for each IMF, which represents different time-scale. This can 
determining whether out-of-control behavior is shorter-term 
or longer-term phenomena. Depending on the time-scale of 
such behavior, different factors can be at play, which can 
be more informative diagnostic tool.

Since an IMF become less stochastic and more determini-
stic as time-scale becomes longer, ones with shorter time- 
scale could be treated as stochastic signals, while longer ones 
are deterministic. Stochastic ones can have 3-  boundary, 
while deterministic ones can have tighter boundary 2~2.5- . 
More research needs to be done on what new advantages 
IMF’s, IA’s, IF’s, and power spectrums could provide. 
Overall, HHT can be a superior tool to any other ones we 
have mentioned above. It is better at handling not only non- 
stationary but also non-linear time-series data. Furthermore, 
it can determine the time-scale of aberrant behaviors which 
cannot be done in other methods.
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