DOI QR코드

DOI QR Code

Adaptive Contrast Stretching for Land Observation in Cloudy Low Resolution Satellite Imagery

  • Lee, Hwa-Seon (Department of Geoinformatic Engineering, Inha University) ;
  • Lee, Kyu-Sung (Department of Geoinformatic Engineering, Inha University)
  • Received : 2012.04.25
  • Accepted : 2012.05.28
  • Published : 2012.06.30

Abstract

Although low spatial resolution satellite images like MODIS and GOCI can be important to observe land surface, it is often difficult to visually interpret the imagery because of the low contrast by prevailing cloud covers. We proposed a simple and adaptive stretching algorithm to enhance image contrast over land areas in cloudy images. The proposed method is basically a linear algorithm that stretches only non-cloud pixels. The adaptive linear stretch method uses two values: the low limit (L) from image statistics and upper limit (U) from low boundary value of cloud pixels. The cloud pixel value was automatically determined by pre-developed empirical function for each spectral band. We used MODIS and GOCI images having various types of cloud distributions and coverage. The adaptive contrast stretching method was evaluated by both visual interpretation and statistical distribution of displayed brightness values.

Keywords

References

  1. Ackerman, S., K. Strabala, P. Menzel, R. Frey, C. Moeller, L. Gumley, B. Baum, S.W. Seemann, and H. Zhang, 2006. Discriminating Clear-sky From Cloud: MODIS Algorithm Theoretical Basis Document (ADBD) of MOD35, Version 5.0, NASA, USA.
  2. Cho, S., Y.H. Ahn, J.H. Ryu, G.S. Kang, and H.S. Youn, 2010. Development of Geostationary Ocean Color Imager (GOCI), Korean Journal of Remote Sensing, 26(2): 157-165. https://doi.org/10.7780/kjrs.2010.26.2.157
  3. Hagolle, O., M. Huc, D.V. Pascual, and G. Dedieu, 2010. A Multi-temporal Method for Cloud Detection, Applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 Images, Remote Sensing of Environment, 114(8): 1747-1755. https://doi.org/10.1016/j.rse.2010.03.002
  4. Jenson, J.R., 2005. Introductory Digital image Processing, 3rd Edition, Prentice Hall, Upper Saddle River, NJ, USA, pp. 266-269.
  5. Kim, Y.M., J.W. Choi, and Y.I. Kim, 2010. An adaptive dynamic range linear stretching method for contrast enhancement. Korean Journal of Remote Sensing, 26(4): 395-401. https://doi.org/10.7780/kjrs.2010.26.4.395
  6. Kim, S.H., J. Eun, S.J. Kang, and K.S. Lee, 2011. Detection of short-term changes using MODIS daily dynamic cloud-free composite algorithm. Korean Journal of Remote Sensing, 27(3): 259-276. https://doi.org/10.7780/kjrs.2011.27.3.259
  7. Lee, K.S. and J.S. Yoon, 2008. Design of Near Realtime land monitoring system over the Korean Peninsula, Journal of Geographic Information System Association of Korea, 16(4): 411-420.
  8. Lee, J.H., J. Kim, C.H. Song, J.H. Ryu, Y.H. Ahn, and C.K. Song, 2010. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sensing of Environment, 114(5): 1077-1088. https://doi.org/10.1016/j.rse.2009.12.021
  9. Martins, J.V., D. Tanré, L. Remer, Y. Kaufman, S. Mattoo, and R. Levy. 2002. MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability, Geophysical Research Letters, 29(12): 4-1-4-3. https://doi.org/10.1029/2001GL014714
  10. Remer, L.A., Y.J. Kaufman, D. Tanre, S. Mattoo, D.A. Chu, J.V. Martins, R.-R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben, 2005. The MODIS Aerosol Algorithm, Products, and Validation, Journal of the Atmospheric Sciences, 64(4): 947-973.
  11. Song, X., Y. Zhao, and Z. Liu, 2004. Cloud detection and analysis of MODIS image. 2004. Proc. of 2004 IEEE Geoscience and Remote Sensing Symposium, Anchorage, Alaska, Sept. 20-24., pp. 2764-2767.