대수 선형 위험함수 학습효과에 근거한 NHPP 신뢰성장 소프트웨어 모형에 관한 비교 연구

The Comparative Study for NHPP Software Reliability Model based on the Property of Learning Effect of Log Linear Shaped Hazard Function

  • 김희철 (남서울대학교 산업경영공학과) ;
  • 신현철 (백석문화대학 인터넷정보학부)
  • 투고 : 2012.05.01
  • 심사 : 2012.06.29
  • 발행 : 2012.06.30

초록

본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 하는 과정에서 소프트웨어 관리자들이 소프트웨어 및 검사 도구에 효율적인 학습기법을 이용한 NHPP 소프트웨어 모형에 대하여 연구 하였다. 적용모형은 로그 형 위험함수 모형을 적용한 유한고장 NHPP에 기초하였다. 소프트웨어 오류 탐색 기법은 사전에 알지 못하지만 자동적으로 발견되는 에러를 고려한 자동에러탐색요인과 사전 경험에 의하여 세밀하게 에러를 발견하기 위하여 테스팅 관리자가 설정해놓은 요인인 학습효과의 특성에 대한 문제를 비교 제시 하였다. 그 결과 학습요인이 자동 에러 탐색요인보다 큰 경우가 대체적으로 효율적인 모형임을 확인 할 수 있었다. 본 논문의 소프트웨어 고장 자료 분석에서는 고장 간격 시간 자료를 적용하고 모수추정 방법은 최우추정 법을 이용하고 추세분석을 통하여 자료의 효율성을 입증한 후 평균제곱오차와 $R^2$(결정계수)를 이용하여 효율적인 모형을 선택 비교하였다.

In this study, software products developed in the course of testing, software managers in the process of testing software and tools for effective learning effects perspective has been studied using the NHPP software. The log type hazard function applied to distribution was based on finite failure NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is greater than autonomous errors-detected factor that is generally efficient model could be confirmed. This paper, a failure data analysis of applying using time between failures and parameter estimation using maximum likelihood estimation method, after the efficiency of the data through trend analysis model selection were efficient using the mean square error and $R^2$(coefficient of determination).

키워드

참고문헌

  1. Gokhale, S. S. and Trivedi, K. S. "A tim e/structure based software reliability mode l", Annals of Software Engineering. 8, pp. 85-121. 1999. https://doi.org/10.1023/A:1018923329647
  2. Goel AL, Okumoto K, " Time-dependent fault detection rate model for software and other performance measures", IEEE Trans Reliab 28, pp.206-11, 1978.
  3. Yamada S, Ohba H. " S-shaped software reliability modeling for software error detection", IEEE Trans Reliab, 32, pp.475-484, 1983.
  4. Zhao M. "Change-point problems in softwa re and hardware reliability", Commun. Stat Theory Methods, 22(3), pp.757-768, 1993. https://doi.org/10.1080/03610929308831053
  5. Shyur H-J. "A stochastic software reliabilit y model with imperfect debugging and change-point", J Syst. Software 66, pp.135-141, 2003. https://doi.org/10.1016/S0164-1212(02)00071-7
  6. Pham H, Zhang X. "NHPP software reliabil ity and cost models with testing coverage ", Eur J Oper Res, 145, pp.445-454, 2003.
  7. Huang C-Y. "Performance analysis of soft ware reliability growth models with testing -effort and change-point". J Syst Software 76, pp. 181-194, 2005. https://doi.org/10.1016/j.jss.2004.04.024
  8. Kuei-Chen, C., Yeu-Shiang, H., and Tzai- Zang, L. "A study of software reliability growth from the perspective of learning effects". Reliability Engineering and System Safety 93, pp. 1410-1421, 2008. https://doi.org/10.1016/j.ress.2007.11.004
  9. J. F. Lawless. Statistical Models and Methods for Lifetime Data. John Wiley & Sons, New York, 1981.
  10. L. Kuo and T. Y. Yang."Bayesian Comput ation of Software Reliability". Journal of the American Statistical Association, Vol.91, pp. 763-773, 1996. https://doi.org/10.1080/01621459.1996.10476944
  11. Alaa Sheta, "Parameter Estimation of Software Reliability Growth Models by Particle Swarm Optimization", AIML Journal, Volume (7), Issue (1), pp. 55-61, June, 2007.
  12. Y. HAYAKAWA and G. TELFAR "Mixe d Poisson-Type Processes with Application in Software Reliability", Mathematical and Computer Modelling, 31, pp. 151-156, 2000. https://doi.org/10.1016/S0895-7177(00)00082-0
  13. K. Kanoun and J. C. Laprie, "Handbook of Software Reliability Engineering", M.R.Lyu, Editor, chapter Trend Analysis. McGraw-Hill New York, NY: 1996; p.401-437.
  14. Hee-Cheul Kim and Hyoung-Keun Park. "The Comparative Study for ENHPP Software Reliability Growth Model Based on Mixture Coverage Function". Communications in Computer and Information Science, Springer-Verlag Berlin, Heidelberg. pp. 187-194, 2011
  15. 김희철, 신현철"학습효과 기법을 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구 ", 정보, 보안 논문지, 제11권 3호, pp. 26-32, 2011년 3월