DOI QR코드

DOI QR Code

부산광역시 일대의 토양 내 라돈 농도 변화 특성

Characteristics of Radon Variability in Soils at Busan Area

  • 김진섭 (부산대학교 지질환경과학과) ;
  • 김선웅 (부산대학교 지질환경과학과) ;
  • 이효민 (부산대학교 지질환경과학과) ;
  • 최정윤 (부산대학교 지질환경과학과) ;
  • 문기훈 (부산대학교 지질환경과학과)
  • Kim, Jin-Seop (Department of Geological Sciences, Pusan National University) ;
  • Kim, Sun-Woong (Department of Geological Sciences, Pusan National University) ;
  • Lee, Hyo-Min (Department of Geological Sciences, Pusan National University) ;
  • Choi, Jeong-Yun (Department of Geological Sciences, Pusan National University) ;
  • Moon, Ki-Hoon (Department of Geological Sciences, Pusan National University)
  • 투고 : 2012.04.12
  • 심사 : 2012.06.18
  • 발행 : 2012.06.28

초록

부산의 지역의 암석 종류에 따른 토양 내 라돈 농도의 시 공간적 변화 특성과 변화 요인에 대하여 연구하였다. 토양 내 라돈($^{222}Rn$)농도와 암석 및 토양의 모원소($^{226}Ra$,$^{228}Ra$ U, Th)의 농도를 부산지역 24개 지점에서 측정하였다. 모암과 토양 내 이들 모원소들의 분포와 거동 특징을 분석하고 라돈과의 상관성을 상세히 규명하였으며, 지형에 대한 영향도 평가하였다. 토양 내 라돈 농도 측정에는 두 가지 in-situ 방법(soil probe 방법과 지중매설튜브 방법)을 적용하여 측정의 정확성에 대하여 비교하였다. 토양 내 라돈의 공간적 분포는 모암의 암석 종류에 따른 U의 농도를 전반적으로 반영하여, 화산암에 비해 심성암에 높고, 산성암>중성암>염기성암 순으로 높은 변화양상을 보였다. 그러나 동일한 모암에서 유래된 토양내의 라돈 농도에서 큰 폭의 변화가 나타나며, 이는 라돈의 모원소인 U와 $^{226}Ra$의 암석과 토양에서의 현저한 방사능 비평형 결과이다. 따라서 토양 내 라돈 농도는 이들 모원소의 암석과 토양 내 농도와의 상관성은 매우 낮게 나타나며, 암석 내 농도에 비해 토양 내 농도와 더 높은 상관성을 보였다. Th과 $^{228}Ra$은 풍화작용과 토양 발달 특성에 따라 U와 지구화학적 거동 및 부하 특징을 달리하기 때문에, 동일한 모암에서 유래된 토양에서도 토양 특징에 따라 U와 현저히 다른 복잡한 농도 변화 양상을 나타내었다. 지형구배를 이루는 경사지의 동일 심도의 토양 내 라돈농도는 위치에 따라 차이를 나타내며, 모암을 같이하는 잔류토양(부산대 내 19개 지점)내에서는 소규모 지형 변화에 의해 토양 내 라돈 농도가 6.8~29.8Bq/L 범위로 변화하였다. 토양 내 라돈 농도는 토양 특성에 따라, 정반대의 계절적 변화 양상을 보인다. 지중매설튜브 방법이 soil probe 방법에 비해 더욱 정확히 토양 내 라돈농도를 측정할 수 있어, 토양 내 라돈의 시 공간적 변화 특성에 대한 분석에 매우 유용한 것으로 나타났다.

The characteristics of temporal spacial radon variation in soil according to parent rock type and affecting factors were studied in Busan, Korea. The concentration of $^{222}Rn$ in soils and their parent elements ($^{226}Ra$,$^{228}Ra$, U and Th) in rocks and soils were measured at 24 sites in Busan area. The distribution and transportation behavior of these parent elements were analyzed and their correlations to radon concentration in soil were determined. Topographic effects were also evaluated. Two in-situ radon measurement (soil probe and buried tube) methods were applied to measure radon concentration in soil and their accuracies were evaluated. The spatial variation of radon in soil generally reflected U concentration in the parent rock. Average radon concentrations were higher in plutonic rocks than in volcanic rocks and were decreased in the order of felsic>intermediate>mafic rock. However, the radon concentrations were significantly varied in soils developed from same parent rocks due to the disequilibrium of U and $^{226}Ra$ between rock and soil. As results, the correlation of these element concentrations between rocks and soils was very low and radon concentrations in soils had highly co-related to the concentrations of these elements in soils. Th and $^{228}Ra$ show complex enrichment characteristics, differing significantly with U, in soils developed from same parent rock because the geochemical behavior of these elements during weathering and soil developing process was different with U. The radon concentrations in the same depth of soil in slope area were also different according to positions. The radon concentrations in soils developed from same parent rocks (19 sites at Pusan National University) varied 6.8~29.8Bq/L range because of small scale topographic variation. The opposite seasonal variation pattern of radon were observed according to soil properties. It was determined that buried tube method is more accurate method than soil probe method and was very advantageous application for the analysis for the characteristics of temporal spacial radon variation in soil.

키워드

참고문헌

  1. Barillon, R., Ozgumus, A. and Chambaudet, A. (2005) Direct recoil radon emanation from crystalline phases. Influence of moisture content, Geochimica et Cosmochimica Acta, v.69, p.2735-2744. https://doi.org/10.1016/j.gca.2004.11.021
  2. Chang, T.W., Kang, P.C., park, S.H., Hwang, S.K. and Lee, D.W. (1983) The geological map of Busan.gadeog sheets, Korea Institute of Energy and resources, p.22.
  3. Durrance, E.M. (1986) Radioactivity in geology: principles and applications, ellis horwood Ltd., 436p.
  4. Faure, G. and Mensing, T.M. (2004) Isotopes: principles and applications, Wiley, 928p.
  5. Greeman, D.J. (1991) The geochemistry of uranium, thorium, and radium in soils of the eastern United States, Ph.D dissertation, Pennsylvania State University, 225p.
  6. Gundersen, L.C.S. and Wanty, R.B. (1991) Field studies of radon in Rocks, Soils and Water, U.S. Geological Survey Bulletin 1971, Washington D.C., USA, 334p.
  7. Hong, Y.-K. (1997) Environmental geochemistry of radon at the Taejon city area in Korea, Econ. Environ. Geol. v.30. p.51-60.
  8. Hong, Y, Kim, S. and Kim, T. (1998) Radon-222 concentrations of metropolitan subway stations and soils in the Seoul, Econ. Environ. Geol. v.31. p.215-222.
  9. Hong, Y. and Hong, S. (2002) Content of natural radio-active elements in bedrocks and radon risk in Korea, Abstract in Spring Conference of The Korean Earth Science Sco., p.64.
  10. Iskandar, D., Hiromi, Y. and Takao, I. (2004) Quantification of the dependency of radon emanation power on soil temperature, Applied Radiation and Isotopes, 60, p.971-973. https://doi.org/10.1016/j.apradiso.2004.02.003
  11. Je, H., kang, C. and Chon, H. (1998) A preliminary study on soil gas 222 Rn concentrations depending on different bedrock geology, Econ. Environ. Geol. v.31. p.415-424.
  12. Je, H. and Chon, H. (2002) A study on characteristics of soil radon gas variation by time series analysis, Abstract in Joint conference of Econ. Environ. Geol. etc., p.28-30.
  13. Kim, D., Hwang, J., Park, K. and Song, K. (1998) 1:250,000 Explanatory note of the Pusan sheet, Korea institute of geology, mining & materials. 62p.
  14. Lee, H., Moon, K, Kim, J., Ahn, J.K. and Kim, H. (2008) Distribution of some environmental radionuclides in rocks and soils of Geumjeong-Gu area in Busan, Korea, Jour. Petrol. Soc. Korea, v.17, p.179-190.
  15. Michel, J. (1884) Redistribution of Uranium and thorium series isotopes during isovolumetric waethering of granite, Geochim. Cosmochim. Acta, 48, p.1249-1255.
  16. Moon, K., Kim, J., Ahn, J.K., Kim, H. and Lee, H. (2009) Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea, Jour. petrol. Soc. Korea, v.18, p.279-291.
  17. Piller, R. and Adams, J.A.S. (1962) the distribution of thorium aand uranium in a Pennsylvania weathering profile, Geochim. Cosmochim. Acta, 26, p.1137-1146. https://doi.org/10.1016/0016-7037(62)90049-2
  18. Pylon Electronics Inc. (2001) Instruction manual number: A900042, 15p.
  19. Son, C.M., Lee, S.M., Kim, Y.K., Kim, S.W. and Kim, H.S. (1978) The geological map of Dongrae and Weolnae sheets, Korea Research Institute of Geoacience and Mineral Resources, p.27.
  20. Thompkins, R.W. (1982) Radiation in uranium mines, CIM Bulletin, September, 1982, p.149-156.
  21. US Environmental Protection Agency (2007) A Citizen's Guide to Radon, U.S. EPA 402-K-07-009.
  22. Washington, J.W. (1990) Radon generation, transport and fate in soil, Ph.D dissertation, Pennsylvania State University, 193p.

피인용 문헌

  1. A study on the modeling of the rate of radon exhalation from soil vol.17, pp.2, 2018, https://doi.org/10.15250/joie.2018.17.2.132