DOI QR코드

DOI QR Code

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test

논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명

  • Lee, Ha-Jung (Department of Environmental Geosciences, Pukyong National University) ;
  • Lee, Min-Hee (Department of Environmental Geosciences, Pukyong National University)
  • 이하정 (부경대학교 지구환경과학과) ;
  • 이민희 (부경대학교 지구환경과학과)
  • Received : 2012.03.23
  • Accepted : 2012.05.29
  • Published : 2012.06.28

Abstract

The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

제강슬래그와 석회석을 이용하여 구리와 납으로 오염된 농경지를 대상으로 안정화 배치 및 칼럼실험을 실시하였으며, 파일럿 규모의 현장 시험구(testing ground: 가로 2 m ${\times}$ 세로 2 m ${\times}$ 깊이 0.5 m)를 4 개 제작하여 실증시험을 실시하였다. 안정화제 종류별 구리와 납의 용출 저감 효과를 규명하기위한 배치실험 결과, 석회석 3% + 제강슬래그 2%를 혼합한 경우, 구리와 납 모두 85% 이상의 높은 용출 저감 효과를 나타내었다. 오염 토양의 장기적 안정화를 예측하고자 인공강우에 의한 연속 용출 칼럼실험을 실시하였다. 배수시스템이 설치된 직경 15 cm, 높이 100 cm의 대형 아크릴 칼럼을 제작하였으며, 배치실험 결과로부터 중금속 용출 저감 효과가 뛰어난 석회석 3% + 제강슬래그 2%를 안정화제로 사용하였다. 안정화제를 첨가하지 않은 경우 칼럼 용출수의 납농도는 시간에 따른 저감이 발생하지 않아 지하수 생활용수 기준치(0.1 mg/L)를 초과하였으나, 안정화제를 첨가한 경우 실험진행 1년부터 0.04 mg/L 이하를 유지하여 용출 저감 효과가 뚜렷하게 나타났다. 안정화제를 첨가하지 않은 시험구의 경우, 60 일 이후에도 토양수의 납 농도는 지하수 생활용수 기준치보다 높은 0.38 mg/L이었으며, 구리의 농도는 0.69 mg/L를 나타내어 오염토양으로부터 지속적인 중금속 용출이 일어나고 있었다. 안정화제를 첨가한 3 개의 시험구 중, 석회석 3% + 제강슬래그 2%를 안정화제로 사용한 시험구의 용출 저감효과가 가장 뛰어나 20 일 이후부터는 구리와 납 모두 용출되지 않았다. 시험구에 벼를 재배하여 부위별 중금속 농도를 분석한 결과, 벼의 성장에 따른 토양으로부터 구리와 납의 식물전이는 뿌리가 가장 높았고, 잎(줄기포함), 쌀알 순이었다. 안정화제를 첨가한 시험구의 경우, 무처리 시험구보다 단위중량당 구리, 납의 식물전이량이 75% 이상 감소하였다. 연구 결과 석회석과 제강슬래그를 혼합한 안정화제 첨가에 의해 오염토양으로부터 구리, 납의 용출이 감소할 뿐 아니라, 재배하는 식물로의 전이량도 대폭 저감하는 것으로 나타났다.

Keywords

References

  1. Bothe, J.V. and Brown, P.W. (1999) Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol., v.33, p.3806-3811. https://doi.org/10.1021/es980998m
  2. Conner, J.R. and Hoeffner, S.L. (1998) The history of stabilization/ solidification technology. Crit. Rev. Environ. Sci. Technol., v.28, p.325-396. https://doi.org/10.1080/10643389891254241
  3. Dimitrova, S.V. and Mehanjiev, D.R. (2000) Interaction of blast-furnace slag with heavy metal ions in water solutions. Wat. Res., v.34, p.1957-1961. https://doi.org/10.1016/S0043-1354(99)00328-0
  4. Gupta, V.K., Rastogi, A., Dwivedi, M.K. and Mohan, D. (1997) Process-development for the removal of zinc and cadmium from waste-water using slag-a blast-furnace waste material. Separation Science and Technology, v.32, p.2883-2912. https://doi.org/10.1080/01496399708002227
  5. Janos, P., Vavrova, J., Herzogova, L. and Pilarova, V. (2010) Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: A sequential extraction study. Geoderma, v.159, p.335-341. https://doi.org/10.1016/j.geoderma.2010.08.009
  6. Kim, K.R., Park, J.S., Kim, M.S., Koo, N.I., Lee, S.H., Lee, J.S., Kim, S.C., Yang, J.E. and Kim, J.G. (2010) Changes in heavy metal phytoavailability by application of immobilizing agents and soil cover in the upland soil nearby abandoned mining area and subsequent metal uptake by red pepper. Korean J. Soil Sci. Fert., v.43, p.864-871.
  7. Kim, M., Ahn, K. and Jung, Y. (2002) Distribution of inorganic arsenic species in mine tailings of abandoned mines from Korea. Chemosphere, v.39, p.307-312.
  8. Kim, T.H. (2002) Recycling of steel slag. Journal of the Korean ceramic society, v.5, p.14-18.
  9. KFDA(Korea Food and Drug Administration) (2000) MRS for Pesticides in Foods.
  10. KMOE(Korean Ministry Of Environment) (2005) General soil investigation for abandoned heavy metal mines in Kyungsang Province; Final report.
  11. KMOE(Korean Ministry Of Environment) (2006) Evaluation of the remediation ranking system in the report "Soil pollution state for abandoned heavy metal mines"; Final report.
  12. KMOE(Korean Ministry of Environment) (2010) General investigation of 20 abandoned asbestos-mines, Korea; Final report.
  13. Koenig, A. and Liu, L.H. (2002) Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors. Journal of Biotechnology, v.99, p.161-171. https://doi.org/10.1016/S0168-1656(02)00183-9
  14. Kwon, S.D. and Kim, S.J. (1999) A study of on the treatment of the acid mine drainage using the steel mill slag. Journal of the Korean society of Groundwater Environment, v.6, p.206-212
  15. Lee, M., Paik, I.S., Kim, I.S., Kang, H.M. and Lee, S.H. (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. Journal of Hazardous Materials, v.144, p.208-214. https://doi.org/10.1016/j.jhazmat.2006.10.007
  16. Lee, M., Lee, Y.S., Yang, M.J., Kim, J.S. and Wang, S.K. (2008) Lime (CaO) and limestone (CaCO3) treatment as th stabilization process for contaminated farmland soil around abandoned mine, Korea. Eco. Environ. Geol., v.41, p.201-210.
  17. Lee, M. and Jeon, J.H. (2010) Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone. Eco. Environ. Geol., v.43, p.305- 314.
  18. Lee, T.J., Kim, K.C., Shin, I.C., Han, K.S., Shim, T.H., Ryu, M.J. and Lee, J.K. (1996) Survey on the contents of trace heavy metals in agricultural products of Gangwon- do. Rep. Inst. Health Environ., v.7, p.75-87.
  19. McGrath, S.P., Gray, C.W., Dunham, S.J., Dennis, P.G. and Zhao, F.J. (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environmental Pollution, v.142, p.530- 539. https://doi.org/10.1016/j.envpol.2005.10.017
  20. Park, D.H., Lim, S.R., Lee, H.W. and Park, J.M. (2008) Mechanism and kientics of Cr(VI) reduction by waste slag generated from iron making industry. Hydrometallurgy, v.93, p.72-75. https://doi.org/10.1016/j.hydromet.2008.03.003
  21. Park, J.S. and Lee, M.K. (2002) A study on contents of heavy and trace metal of the agricultural products around miners located in Chollanamdo. Korea J. Food Nutr., v.15, p.64-69.
  22. Sparks, D.L. (1995) Environmental soil chemistry, Academic Press, CA, p267.
  23. Udovic, M. and Lestan, D. (2007) The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environ. Pollut., v.148, p.663-668. https://doi.org/10.1016/j.envpol.2006.11.010
  24. Xue, Y., Hou, H. and Zhu, S. (2009) Competitive adsorption of $copper({\Pi}),\;cadmium({\Pi}),\;lead({\Pi})\;and\;zinc({\Pi})$ onto basic oxygen furnace slag. Journal of Hazardous Materials, v.162, p.391-401. https://doi.org/10.1016/j.jhazmat.2008.05.072
  25. Yang, J.E., Oh, S.J., Kim, S.C., Yoon, H.S., Kim, H.N., Kim, T.H., Yeon, K.H., Lee, J.S. and Hong, S.J. (2011) Evaluating heavy metal stabilization efficiency of chemical amendment in agricultural field: field experiment. Korean J. Soil Sci. Fert., v.44, p.1052-1062. https://doi.org/10.7745/KJSSF.2011.44.6.1052
  26. Yun, S.W., Jin, H.G., Kang, S.I., Choi, S.J., Lim, Y.C. and Yu, C. (2010) A comparison on the effect of soil improvement methods for the remediation of heavy metal contaminated farm land soil. Journal of the Korean geotechnical society, v.26, p.59-70.

Cited by

  1. The Fate of As and Heavy Metals in the Flooded Paddy Soil Stabilized by Limestone and Steelmaking Slag vol.20, pp.1, 2015, https://doi.org/10.7857/JSGE.2015.20.1.007
  2. Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil vol.48, pp.1, 2015, https://doi.org/10.7745/KJSSF.2015.48.1.064
  3. Assessment on the Transition of Arsenic and Heavy Metal from Soil to Plant according to Stabilization Process using Limestone and Steelmaking Slag vol.18, pp.7, 2013, https://doi.org/10.7857/JSGE.2013.18.7.063