DOI QR코드

DOI QR Code

2007년 봄철 대전지역에서 발생한 황사 및 대기부유물의 지구화학적 특성 및 중 금속의 오염도

Geochemical Characteristics and Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2007 (spring season)

  • 이평구 (한국지질자원연구원 지구환경연구본부) ;
  • 염승준 (한국지질자원연구원 지구환경연구본부) ;
  • 배법근 (대전대학교 지구시스템공학과)
  • Lee, Pyeong-Koo (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Youm, Seung-Jun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae, Beob-Geun (Department of Geosystem Engineering, Daejeon University)
  • 투고 : 2011.07.27
  • 심사 : 2012.06.08
  • 발행 : 2012.06.28

초록

본 연구에서는 2007년도 봄철 대전 지역에서 발생한 황사(황사 기간) 및 대기부유물(비황사 기간)의 미량원소의 지구화학적 특성과 정량적 오염정도를 평가하였다. 황사 내 미량원소의 함량은 황사발원지 토양의 평균 함량에 비하여 수십에서 수백 배 높은 함량을 보여주고 있으며, 비황사 시기의 대기부유물에서도 유사한 특성을 보이고 있어, 황사 시기뿐만 아니라 비황사 시기에도 중국으로부터 이동되는 오염물질의 영향을 받고 있음을 지시하고 있다. 입도별 미량원소의 함량은 $PM_{2.5}$에서 Cr, Cu, Pb, Zn, V, S, As, Cd, Co, Ni, Mo, Sb, Cs, Rb, Th, Sc, Y 등이, 그리고 TSP에서는 Zr, Sr, Ba, Li, Th, U 등의 함량이 가장 높은 것으로 나타났다. 황사의 S, Cd, Mo, Zn, Pb, Sb, Cu 및 Zr 함량은대기부유물과 큰 차이를 보이지 않으나, 대기오염으로 부화가 발생하지 않는 Li, Cs, Co, U, Cr, Ni, Rb, V, Th, Y, Sr, Sc 등은 황사에서 2-4.2배 높아졌다. 그러므로 이들 원소들을 황사발생의 지시원소로 사용할 수 있으며, 특히 Sr, V, Cr 및 Li 등은 황사 발생을 판단하기 위한 지시원소로 사용하기에 적합한 것으로 보인다. 한편 황사의 이동경로에 따른 미량원소의 함량을 살펴본 결과, 중국의 대도시 및 산업단지를 경유하여 국내 유입된 황사가, 북한을 경유하여 국내에 도달한 황사에 비해서, S, Cd, Zn, Pb, Cu, Mo 및 As 함량이 높게 나타나, 황사의 이동경로가 이들 미량원소 오염 여부 및 오염도를 결정하는데 중요한 역할을 하는 것으로 판단된다. 황사 및 대기부유물 내 미량원소의 부화지수(Enrichment factor)을 기준으로 오염정도를 분류한 결과, 환경재해 측면에서 가장 문제가 되는 미량원소는 S, Zn, Cu, Pb, As, Mo, Cd이며, 이들은 인간의 건강 뿐만 아니라, 오랜 기간 토양과 수계환경에 퇴적될 경우 환경오염으로 인한 주변 생태계에 해로운 영향을 미치게 될 것으로 판단된다.

We evaluated the geochemical characteristics and their potential pollution of Asian Dusts in Daejeon, Korea during spring 2007. Compared with the chemical compositions of soils in source area of Asian Dust, those of aerosols in Daejeon were enriched with trace elements (ten to hundred fold), inferring that pollutants from China have affected on local environment in adjoining country such as Korea. Chemical analysis of aerosols during Asian dust showed that fine particles ($PM_{2.5}$) contained high contents of trace elements such as Cr, Cu, Pb, Zn, V, S, As, Cd, Co, Ni, Mo, Sb, Cs, Rb, Th, Sc and Y. In the case of TSP (Total Suspended Particle), Zr, Sr, Ba, Li, Th and U were contained much more than other trace elements. The contents of some elements (i.e. Li, Cs, Co, U, Cr, Ni, Rb, V, Th, Y, Sr and Sc) in aerosols collected in Asian Dust period, which are not likely enriched by air pollutants, were higher (2 - 4.2 fold) than those in Non Asian Dust period, indicating that these elements could be used as indicator elements for determining the occurrence of Asian Dust phenomena (especially, Sr, V, Cr & Li). In the case of Asian Dust coming through the big cities and/or industrial areas of China, the domestic aerosols had higher contents of trace elements (such as S, Cd, Zn, Pb, Cu, Mo and As) than those from Northeastern China via North Korea, indicating that the transportation courses of air mass are very important to determine the pollution degrees. Using the enrichment factors of trace elements in aerosols during Asian Dust and Non Asian Dust, we identified that some elements (i.e. S, Zn, Cu, Pb, As, Mo and Cd) were most problematic in terms of environmental hazard aspects, and these elements could affect adverse effects on human health as well as ecosystem and surface environment (soil and water) through long-lived precipitation.

키워드

참고문헌

  1. Banwart, S.A. and Malmstrom, M.E. (2001) Hydrochemical modeling for preliminary assessment of minewater pollution, J. Geochem. Explor, 74, p.73-97. https://doi.org/10.1016/S0375-6742(01)00176-5
  2. Berg, T., Royset, O. and Steinners, E., (1994) Trace elements in atmospheric precipitations at Norwegiom background stations (1989-1990) measured by ICPMS, Atmospheric Environment, 28, p.3519-3536. https://doi.org/10.1016/1352-2310(94)90009-4
  3. Chester, R., Nimmo, M., Fones, G.R., Keyse, S. and Zhang, Z. (2000) Trace metals chemistry of particulates aerosols from the UK mainland costal rim of the NE Irish Sea, Atmopheric Environment, 34, p.949-958. https://doi.org/10.1016/S1352-2310(99)00234-4
  4. Choi, G.H., Kim, K.H., Kang, C.H. and Lee, J.H. (2003) The Influence of the Asian Dust on the Metallic Composition of Fine and Coarse Particle Fractions, Journal of Korean Society for Atmospheric Environment, v.19, n.1, p.45-56.
  5. Chun, Y.S., Kim, J.Y., Choi, J.C., Boo, K.O., Oh, S.N. and Lee, M.H. (2001) Characteristic number size distribution of aerosol during Asian dust oeriod in Korea, Atmospheric Environment, 35, p.2715-2721. https://doi.org/10.1016/S1352-2310(00)00404-0
  6. Chung, H.J. and Kim, J.H. (2004) A Study on the concentration of heavy metals in Asian dust at Daejeon Area, J. Korean Society of Environmental Administration, v.10, n.4, p.263-271.
  7. Daskalakis, K.D. and O'Connor, T.P. (1995) Normalization and elemental sediment contamination in the Coastal United States, Environ. Sci. Tech., 29, p.470-477. https://doi.org/10.1021/es00002a024
  8. David, M.T., Robert, J.F. and Douglas, L.W. (2001) April 1998 Asian dust event: A Southern California perspective, Journal of Geophysical Research, 106(D16), p.18371-18379. https://doi.org/10.1029/2000JD900758
  9. Draxler, R.R. and Rolph, G. (2003) HYSPLIT4 (HYBrid single-particle lagrangian integrated trajectory) Model. Air Resour. Lab, Natl. Oceanic and Atoms. Admin. Silver Spring, Md. (http://www.arl.noaa.gov/ready/hysplit4.html).
  10. Faiz, Y., Tufail, M., Tayyeb Javed, M., Chaudhry, M.M. and Naila-Siddique (2009) Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan, Microchemical Journal, 92, p.186-192. https://doi.org/10.1016/j.microc.2009.03.009
  11. Guo, Z.G., Feng, J.L., Fang, M., Chen, H.Y. and Lau, K.H. (2004) The elemental and organic characteristics of PM2.5 in Asian dust episodes in Qingdao, China, Atmospheric Environment, 38, p.909-919. https://doi.org/10.1016/j.atmosenv.2003.10.034
  12. Jeon, B.I., Hwang, Y.S., Lee, H.W., Yang, A.R., Kim, H.J., Seol, J.H., Kang, Y.J., Kim, T.H. and Jang, H.S. (2005), Characteristics of Metallic Elements Concentration of Fine Particles (PM10, PM2.5) at Busan in 2004, Jour. Korean Earth Science Society, v.26, n.6, p.573-583.
  13. Jeon, B.I. and Hwang, Y.S. (2010) Chemical Properties of the Metallic Elements and the Mass Concentration of PM10 and PM2.5 Observed in Busan, Korea in Springtime of 2006-2008, Jour. Korean Earth Science Society, v.31, n.3, p.234-245. https://doi.org/10.5467/JKESS.2010.31.3.234
  14. Joussaaume, S. (1990) Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model, Journal of Geophysical Research, 5(D2), p.1909-1941.
  15. Kai, K., Okada, Y., Uchino, O., Tabata, I., Nakamura, H., Takasugi, T. and Nikaidou, Y. (1988) Lidar observation and numerical simulation of a Kosa (Asian dust) over Tsukuba, Japan during the Spring of 1986, J. Meteor. Soc. Japan, 66, p.457-472. https://doi.org/10.2151/jmsj1965.66.3_457
  16. Kim, H.K., Jung, K.M., Kim, D.J. and Lee, J.T. (2002) Characteristics of Inorganic Components in Fine Particles Collected at Chunchon during the Springtime Yellow Sand Occurrence Period in 2002, J. Environ. Toxicol., v.17, n.4, p.333-339.
  17. Kim, K.H., Choi, G.H. and Kang, C.H. (2002) The Metallic Composition of PM2.5 and PM10 in a Northeast Region of Seoul During the Spring 2001, Jour. Korean Earth Science Society, v.23, n.6, p.514-525.
  18. Kim, K.H., Kang, C.H., Lee, J.H., Choi, K.C. and Youn, Y.H. (2004) The Influence of the Asian Dust on the Springtime Distribution of Airborne Lead, Journal of Korean Society for Atmospheric Environment, v.20, n.6, p.833-838.
  19. Kim, M.Y., Cho, S.J., Kim, K.R. and Lee, M.H. (2003) The Behaviour of Dust Concentrations During Sand Storm in Seoul Area, Jour. Korean Earth Science Society, v.24, n.4, p.315-324.
  20. Lee, P.K., Youm, S.J. and An, G.O. (2011) Geochemical Characteristics of Soils in Major Source Area of Asian Dust, Korean Society of Economic and Environmental Geology, v.45, n.1, p.9-21. https://doi.org/10.9719/EEG.2012.45.1.009
  21. Lee, Y.K., Kim, J.C., Choi, S.S., Im, H.B., Choi, Y.H. and Lee, S.M. (2002) A Study on the Concentration Distribution Characteristics of Air Pollutants by Yellow Sand Phenomenon, Korean J. Sanitation, v.17, n.2, p.71-78.
  22. Lin, T.-H. (2001) Long-range transport of yellow sand to Taiwan in spring 2000 observed evidence and simulation, Atmospheric Environment, 35, p.5873-5882. https://doi.org/10.1016/S1352-2310(01)00392-2
  23. Mckendry, I.G., Hacker, J.P., Stull, R., Sakiyama, S., Mignacca, D. and Reid, K. (2001) Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada, Journal of Geophysical Research, 104(D15), p.18521-18533.
  24. Rashed, M.N. (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt, Journal of Hazardous Materials, 178, p.739-746. https://doi.org/10.1016/j.jhazmat.2010.01.147
  25. Rubio, B., Nombela, M.A. and Vilas, F. (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution, Marine Polluti. Bull. 11, p.968-980.
  26. Shin, S.A., Han, J.S., Hong, Y.D., Ahn, J.Y., Moon, K.J., Lee, S.J. and Kim, S.D. (2005) Chemical Composition and Features of Asian Dust Observed in Korea (2000- 2002), Journal of Korean Society for Atmospheric Environment, v.21, n.1, p.119-129.
  27. Tessier, A., Campbell, P.G.C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem., v.51, p.844-850. https://doi.org/10.1021/ac50043a017

피인용 문헌

  1. Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2008 vol.19, pp.1, 2014, https://doi.org/10.7857/JSGE.2014.19.1.008