DOI QR코드

DOI QR Code

Usage of RSSI in WAVE Handover

WAVE 핸드오버상에서 수신 신호 세기의 이용

  • 조웅 (중원대학교 컴퓨터시스템공학과)
  • Received : 2012.06.29
  • Accepted : 2012.12.10
  • Published : 2012.12.31

Abstract

Received signal strength indicator (RSSI) represents the strength of the received signal at the front end of analog-to-digital convertor (ADC) input. RSSI value can be used for deciding the status of channel at the receiver. In this paper, the usage of RSSI in handover is studied using the practical measurement data. We first measure RSSI in 5.9GHz frequency band which is commonly used in wireless access in vehicular environments (WAVE) system. i.e., vehicular communications. Then, to implement a fast handover, the usability of RSSI data is analyzed based on the measured data. We also apply handover in practical highway environments.

수신 신호 세기 (RSSI: Received signal strength indicator)는 아날로그-디지털 변환기 입력단에서 수신신호의 세기를 나타낸다. 통신시스템에서 수신 신호 세기는 수신단에서 채널의 상태를 결정하는데 사용된다. 본 논문에서는 핸드오버상에서 실측값을 바탕으로 한 수신 신호 세기의 이용에 대해 알아본다. 먼저 WAVE (Wireless Access in Vehicular Environments)라 일컫어지는 차량통신을 위한 5.9GHz 주파수대에서 RSSI값을 측정한다. 측정된 데이터를 바탕으로 하여 빠른 핸드오버 방식 적용을 위한 수신 신호 세기의 이용에 대해 논의하고, 실제 고속도로 환경에서 RSSI를 이용하여 핸드오버를 적용한다.

Keywords

References

  1. IEEE Std 802.11p, IEEE standard for information technology-telecommunications and information exchange between systemslocal and metropolitan area networks-specific requirements, Part 11, Amendment 6: Wireless Access in Vehicualr Environments, 2010.
  2. G. Acosta-Marum and M. A. Ingram, "Six time-and frequency-selective empirical channel models for vehicular wireless LANs", IEEE Vehicular Technology Magazine, Vol. 2, No. 4, pp. 4-11, 2007.
  3. V. Kukshya and H. Krishnan, "Experimental measurements and modelling for vehicleto-vehicle dedicated short range communication (DSRC) wireless channels", Proc. of Vehicle Technology Conference, pp. 1-5, 2006.
  4. W. Cho, "Physical layer issues in vehicular communications", The journal of the Korea Institute of Electronic Communication Sciences, Vol. 7, No. 5, pp. 1229-1234, 2012.
  5. M-H. Go, S-C. Pyo and H-D. Park, "A study on the amplification block for integrated antenna module applicable to vehicles", The journal of the Korea Institute of Electronic Communication Sciences, Vol. 4, No. 2, pp. 87-92, 2009.
  6. S-J. Lee, J-H. Yoon, and J-W. Lee, "Antenna design of mobile frequency bands for vehicular application", The journal of the Korea Institute of Electronic Communication Sciences, Vol. 6, No. 3, pp. 337-341, 2011.
  7. A. Bohm and M. Jonsson, "Handover in IEEE 802.11p-based delay sensitive vehicle - to - infrastructure communication", Research Report IDE - 0924, School of Information Science, Computerand Electrical Engineering (IDE), Halmstad University, Sweden, 2009.
  8. T. Y. Wu and W. F. Wang, "Reducing handoff delay of wireless access in vehicular environments by artificial neural networkbased geographical fingerprint", IET Communications, Vol. 5, No. 4, pp. 542-553, 2011. https://doi.org/10.1049/iet-com.2010.0195
  9. B. S. Gukhool and S. Cherkaoui, "Handoff in IEEE 802.11p based vehicular networks", Proc. of IFIP Wireless and Optical Communications Networks, pp. 1-5, 2009.
  10. A. Shimizu, S. Fukuzawa, T. Osafune, M. Hayashi, and S. Matsui, "Enhanced functions of 802.11 protocol for adaptation to communications between high speed vehicles and infrastructure", Proc. ITS Telecommunications, pp. 1-3, 2007.