DOI QR코드

DOI QR Code

고양이 삼차신경꼬리핵에서 저역치기계자극수용기 유래 들신경종말의 연접이전종말이 함유하는 신경전달물질에 대한 정량적 분석

Quantitative Analysis of Neurotransmitters in the Endings Presynaptic to Vibrissa Afferent Terminals in the Cat Trigeminal Caudal Nucleus

  • 김윤숙 (경북대학교 치의학전문대학원 구강해부학교실) ;
  • 문철주 (경북대학교 치의학전문대학원 구강해부학교실) ;
  • 조진현 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 배진영 (경북대학교 치의학전문대학원 구강해부학교실) ;
  • 나연경 (경북대학교 간호대학 기초간호과학교실) ;
  • 복혜정 (부산여자대학교 치위생과) ;
  • 배용철 (경북대학교 치의학전문대학원 구강해부학교실) ;
  • 백상규 (경북대학교 치의학전문대학원 구강해부학교실)
  • Kim, Yun-Sook (Department of Oralanatomy and Neurobiology, Kyungpook National University) ;
  • Mun, Cheol-Ju (Department of Oralanatomy and Neurobiology, Kyungpook National University) ;
  • Cho, Jin-Hyun (Department of Prosthetics, School of Dentistry, Kyungpook National University) ;
  • Bae, Jin-Young (Department of Oralanatomy and Neurobiology, Kyungpook National University) ;
  • Na, Yeon-Kyung (Division of Basic Nursing Science, College of Nursing, Kyungpook National University) ;
  • Bok, Hye-Jeong (Department of Dental Hyegine, Busan Women's College) ;
  • Bae, Yong-Chul (Department of Oralanatomy and Neurobiology, Kyungpook National University) ;
  • Paik, Sang-Kyoo (Department of Oralanatomy and Neurobiology, Kyungpook National University)
  • 투고 : 2012.01.19
  • 심사 : 2012.03.26
  • 발행 : 2012.03.31

초록

이 연구에서는 삼차신경꼬리핵 제 3~4층에서 저역치기계자극정보를 전달하는 일차들신경섬유의 종말과 연접하는 연접이전종말(presynaptic ending; p-ending)들이 어떤 억제성 신경전달물질을 함유하는 지를 분석하고자 하였다. 이를 위해 전기생리학적으로 동정된 고양이콧수염유래 일차들신경종말을 단일 축삭내 HRP주입법으로 표식하였고, GABA와 glycine에 대한 항혈청으로 포매후금입자면역염색법을 시행한 후, 정량적 분석을 실시하였다. 표식종말과 연접하는 16개 p-ending들 중 8개(50%, 8/16) p-ending들은 GABA만을 함유하였으며, 나머지 8개(50%, 8/16) p-ending들은 GABA와 glycine 모두를 함유하는 집단으로 분류할 수 있었다. 또한, 이 두 집단의 p-ending 사이에는 유의한 평균체적의 차이가 보이지 않았으며, 각 p-ending이 함유하는 GABA와 glycine의 상대적 함량은 서로 달랐다. 이러한 결과들은 삼차신경꼬리핵에서 콧수염유래 일차들신경섬유에 의해 전달되는 저역치기계자극정보는 GABA 및 glycine에 의해 연접이전제어(presynaptic modulation)를 받으며, 그 연접이전제어는 각 일차들신경섬유의 종말마다 다르게 나타날 것 이라는 점을 제시한다.

The goal of this study was to identify neurotransmitters in endings (p-endings) presynaptic to low-threshold mechanoreceptive vibrissa afferents in the laminae III/IV of cat trigeminal caudal nucleus (Vc). Rapidly-adapting vibrissa afferents were intra-axonally labeled after electrophysiological identification, and postembedding immunogold staining with antisera against ${\gamma}$-aminobutyric acid (GABA) and glycine was performed, followed by quantitative ultrastructural analysis of p-endings presynaptic to the labeled vibrissa afferent terminals. Sixteen p-endings, which are presynaptic to the HRP-labeled vibrissa afferent terminals, were analyzed in this study: Eight p-endings (50%, 8/16) were immunopositive to GABA but immunonegative to glycine (GABA+ p-ending), and remaining 8 p-endings (50%, 8/16) exhibited immunoreactivity to both GABA and glycine. Bouton volume of the p-endings was not significantly different between the two groups. However, the p-endings differed from each other in relative content of GABA and glycine. These findings suggest that low-threshold mechanoreceptive information conveyed through vibrissa afferent at Vc is presynaptically modulated by GABA and/or glycine, and that degree of presynaptic modulation may differ among each vibrissa afferent terminal.

키워드

참고문헌

  1. Adams JC: Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2 : 141-145, 1977. https://doi.org/10.1016/0306-4522(77)90074-4
  2. Amico C, Marchetti C, Nobile M, Usai C: Pharmacological types of calcium channels and their modulation by baclofen in cerebellar granules. J Neurosci 15 : 2839-2848, 1995.
  3. Aronin N, DiFiglia M, Liotta AS, Martin JB: Ultrastructural localization and biochemical features of immunoreactive LEU-enkephalin in monkey dorsal horn. J Neurosci 1 : 561-577, 1981.
  4. Bae YC, Ahn HJ, Park KP, Kim HN, Paik SK, Bae JY, Lee HW, Kim KH, Yoshida A, Moritani M, Shigenaga Y: The synaptic microcircuitry associated with primary afferent terminals in the interpolaris and caudalis of trigeminal sensory nuclear complex. Brain Res 1060 : 118-125, 2005. https://doi.org/10.1016/j.brainres.2005.08.042
  5. Bae YC, Ihn HJ, Park MJ, Ottersen OP, Moritani M, Yoshida A, Shigenaga Y: Identification of signal substances in synapses made between primary afferents and their associated axon terminals in the rat trigeminal sensory nuclei. J Comp Neurol 418 : 299-309, 2000. https://doi.org/10.1002/(SICI)1096-9861(20000313)418:3<299::AID-CNE5>3.0.CO;2-I
  6. Bae YC, Yoshida A: Ultrastructural basis for craniofacial sensory processing in the brainstem. Int Rev Neurobiol 97 : 99-141, 2011. https://doi.org/10.1016/B978-0-12-385198-7.00005-9
  7. Broman J, Anderson S, Ottersen OP: Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn. Eur J Neurosci 5 : 1050-1061, 1993. https://doi.org/10.1111/j.1460-9568.1993.tb00958.x
  8. Cattaert D, El Manira A: Shunting versus inactivation: analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. J Neurosci 19 : 6079-6089, 1999.
  9. Curtis DR, Lodge D, Bornstein JC, Peet MJ: Selective effects of (-)- baclofen on spinal synaptic transmission in the cat. Exp Brain Res 42 : 158-170, 1981.
  10. De Biasi S, Vitellaro-Zuccarello L, Bernardi P, Valtschanoff JG, Weinberg RJ: Ultrastructural and immunocytochemical characterization of primary afferent terminals in the rat cuneate nucleus. J Comp Neurol 37 : 275-287, 1994.
  11. Doyle CA, Maxwell DJ: Light- and electron-microscopic analysis of neuropeptide Y-immunoreactive profiles in the cat spinal dorsal horn. Neuroscience 61 : 107-121, 1994. https://doi.org/10.1016/0306-4522(94)90064-7
  12. Dutar P, Nicoll RA: A physiological role for GABAB receptors in the central nervous system. Nature 332 : 156-158, 1988. https://doi.org/10.1038/332156a0
  13. Edwards FR, Harrison PJ, Jack JJ, Kullmann DM: Reduction by baclofen of monosynaptic EPSPs in lumbosacral motoneurones of the anaesthetized cat. J Physiol 416 : 539-556, 1989. https://doi.org/10.1113/jphysiol.1989.sp017776
  14. Jonas P, Bischofberger J, Sandkuhler J: Corelease of two fast neurotransmitters at a central synapse. Science 281 : 419-424, 1998. https://doi.org/10.1126/science.281.5375.419
  15. Keller AF, Coull JA, Chery N, Poisbeau P, De Koninck Y: Regionspecific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn. J Neurosci 21 : 7871-7880, 2001.
  16. Lovick TA: Primary afferent depolarization of tooth pulp afferents by simulation in nucleus raphe magnus and the adjacent reticular formation in the cat: effect of bicuculine. Neurosci Lett 25 : 173- 178, 1981. https://doi.org/10.1016/0304-3940(81)90327-X
  17. Lovick TA: The role of 5-HT, GABA and opioid peptides in presynaptic inhibition of tooth pulp input from the medial brainstem. Brain Res 289 : 135-142, 1983. https://doi.org/10.1016/0006-8993(83)90014-8
  18. Luscher C, Jan LY, Stoffel M, Malenka RC, Nicoll RA: G proteincoupled inwardly rectifying $K^{+}$ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19 : 687-695, 1997. https://doi.org/10.1016/S0896-6273(00)80381-5
  19. Maxwell DJ, Christie WM, Brown AG, Ottersen OP, Storm-Mathisen J: Identified hair follicle afferent boutons in the spinal cord of the cat are enriched with L-glutamate-like immunoreactivity. Brain Res 606 : 156-161, 1993. https://doi.org/10.1016/0006-8993(93)91584-F
  20. Maxwell DJ, Christie WM, Ottersen OP, Storm-Mathisen J: Terminals of group Ia primary afferent fibers in Clarke's column are enriched with L-glutamate-like immunoreactivity. Brain Res 510 : 346-350, 1990a. https://doi.org/10.1016/0006-8993(90)91389-X
  21. Maxwell DJ, Christie WM, Short AD, Brown AG: Direct observation of synapses between GABA-immunoreactive boutons and muscle afferent terminals in lamina VI of the cat's spinal cord. Brain Res 530 : 215-222, 1990b. https://doi.org/10.1016/0006-8993(90)91285-O
  22. Mintz IM, Bean BP: GABAB receptor inhibition of P-type $Ca^{2+}$ channels in central neurons. Neuron 10 : 889-898, 1993. https://doi.org/10.1016/0896-6273(93)90204-5
  23. Moon YS, Paik SK, Seo JH, Yi HW, Cho YS, Moritani M, Yoshida A, Ahn CD, Kim YS, Bae YC: GABA- and glycine-like immunoreactivity in axonal endings presynaptic to the vibrissa afferents in the cat trigeminal interpolar nucleus. Neuroscience 152 : 138-145, 2008. https://doi.org/10.1016/j.neuroscience.2007.11.033
  24. Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H: Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7 : 17-23, 2004. https://doi.org/10.1038/nn1170
  25. Nakagawa S, Kurata S, Yoshida A, Nagase Y, Moritani M, Takemura M, Bae YC, Shigenaga Y: Ultrastructural observations of synaptic connections of vibrissa afferent terminals in cat principal sensory nucleus and morphometry of related synaptic elements. J Comp Neurol 389 : 12-33, 1997. https://doi.org/10.1002/(SICI)1096-9861(19971208)389:1<12::AID-CNE2>3.0.CO;2-H
  26. Olszewski J: On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92 : 401-413, 1950. https://doi.org/10.1002/cne.900920305
  27. Ottersen OP, Storm-Mathisen J, Madsen S, Skumlien S, Stromhaug J: Evaluation of the immunocytochemical method for amino acids. Med Biol 64 : 147-158, 1986.
  28. Paik SK, Choi SK, Lee JW, Kim TH, Ahn DK, Yoshida A, Kim YS, Bae YC: Ultrastructural analysis of low-threshold mechanoreceptive vibrissa afferent boutons in the cat trigeminal caudal nucleus. Anat Cell Biol 43 : 340-346, 2010. https://doi.org/10.5115/acb.2010.43.4.340
  29. Peng YY, Frank E: Activation of GABAB receptors causes presynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J Neurosci 9 : 1502-1515, 1989a.
  30. Peng YY, Frank E: Activation of GABAA receptors causes presynaptic and postsynaptic inhibition at synapses between muscle spindle afferents and motoneurons in the spinal cord of bullfrogs. J Neurosci 9 : 1516-1522, 1989b.
  31. Pierce JP, Lewin GR: An ultrastructural size principle. Neuroscience 58 : 441-446, 1994. https://doi.org/10.1016/0306-4522(94)90071-X
  32. Pierce JP, Mendell LM: Quantitative ultrastructure of Ia boutons in the ventral horn: scaling and positional relationships. J Neurosci 13 : 4748-4763, 1993.
  33. Poncer JC, McKinney RA, Gähwiler BH, Thompson SM: Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 18 : 463-472, 1997. https://doi.org/10.1016/S0896-6273(00)81246-5
  34. Ribeiro-Da-Silva A, Cuello AC: Choline acetyltransferase-immunoreactive profiles are presynaptic to primary sensory fibers in the rat superficial dorsal horn. J Comp Neurol 295 : 370-384, 1990. https://doi.org/10.1002/cne.902950303
  35. Ribeiro-Da-Silva A, Pioro EP, Cuello AC: Substance P- and enkephalin- like immunoreactivities are colocalized in certain neurons of the substnatia gelatinosa of the rat spinal cord: an ultrastructural double-labeling study. J Neurosci 11 : 1068-1080, 1991.
  36. Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D: GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J Physiol 541 : 123-137, 2002. https://doi.org/10.1113/jphysiol.2001.016063
  37. Scholz K, Miller RJ: GABAB receptor-mediated inhibition of $Ca^{2+}$ currents and synaptic transmission in cultured rat hippocampal neurones. J Physiol 444 : 669-686, 1991. https://doi.org/10.1113/jphysiol.1991.sp018900
  38. Sutherland FI, Bannatyne BA, Kerr R, Riddell JS, Maxwell DJ: Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. J Comp Neurol 452 : 154-162, 2002. https://doi.org/10.1002/cne.10374
  39. Todd AJ, Maxwell DJ, Brown AG: Rlationships between hair-follicle afferent axons and glycine-immunoreactive profiles in cat spinal dorsal horn. Brain Res 564 : 132-137, 1991. https://doi.org/10.1016/0006-8993(91)91362-5
  40. Todd AJ, Spike RC, Chong D, Neilson M: The relationship between glycine and gephyrin in synapses of the rat spinal cord. Eur J Neurosci 7 : 1-11, 1995. https://doi.org/10.1111/j.1460-9568.1995.tb01014.x
  41. Todd AJ: An electron microscope study of glycine-like immunoreactivity in laminae I-III of the spinal dorsal horn of the rat. Neuroscience 39 : 387-394, 1990. https://doi.org/10.1016/0306-4522(90)90275-9
  42. Valtschanoff JG, Weinberg RJ, Rustioni A: Peripheral injury and anterograde transport of WGA-HRP to the spinal cord. Neuroscience 50 : 685-696, 1992. https://doi.org/10.1016/0306-4522(92)90457-D
  43. Watson A, Le Bon-Jego M, Cattaert D: Central inhibitory microcircuits controlling spike propagation into sensory terminals. J Comp Neurol 484 : 234-248, 2005. https://doi.org/10.1002/cne.20474
  44. Watson AH, Hughes DI, Bazzaz AA: Synaptic relationships between hair follicle afferents and neurones expressing GABA and glycine-like immunoreactivity in the spinal cord of the rat. J Comp Neurol 452 : 367-380, 2002. https://doi.org/10.1002/cne.10410
  45. Watson AH: GABA- and glycine-like immunoreactivity in axons and dendrites contacting the central terminals of rapidly adapting glabrous skin afferents in rat spinal cord. J Comp Neurol 464 : 497-510, 2003. https://doi.org/10.1002/cne.10812