Abstract
Changes in the styles of communities are leading of increases in the number of high-rise apartments and commercial-apartment structures. Tall high-rise structures, while presenting unique economies of scale and cost effectiveness, tend to be highly engineered and complex structures. In the event of a fire, this complexity in design also results in a complexity in the behavior of fire propagation and control. High-rise structures are among the most potentially dangerous due to the high population density in the building, and the inherent limitations on evacuation and on fire control services. One of the most critical points of fire propagation is the movement of fire through the outer wall structures. Controlling such propagation is essential in controlling the spread of the fire throughout the building itself, as well as controlling the potential for its spread to adjacent buildings. In this study, we will be examining the potential for fire control design and effects mitigation using a 1/4.5 scale model. The primary focus of the study will be the effects of extended balconies into the structure of high-rise apartments. The authors will also consider the effectiveness of reduced-scale model tests.