DOI QR코드

DOI QR Code

한반도 태양에너지 연구를 위한 일사량 자료의 TMY 구축

The Generation of Typical Meteorological Year for Research of the Solar Energy on the Korean Peninsula

  • 지준범 (국립기상연구소 응용기상과) ;
  • 이승우 (기상청 수치모델개발과) ;
  • 최영진 (국립기상연구소 응용기상과) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Jee, Joon-Bum (Applied Meteorology Research Laboratory, National Institute of Meteorological Research) ;
  • Lee, Seung-Woo ;
  • Choi, Young-Jean (Applied Meteorology Research Laboratory, National Institute of Meteorological Research) ;
  • Lee, Kyu-Tae (Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University)
  • 투고 : 2012.03.16
  • 심사 : 2012.05.31
  • 발행 : 2012.06.25

초록

The TMY (Typical Meteorological Year) for the solar energy study is generated using observation data with 22 solar sites from KMA (Korea Meteorological Administration) during 11 years (2000-2010). The meteorological data for calculation the TMY are used solar radiation, temperature, dew point temperature, wind speed and humidity data. And the TMY is calculated to apply the FS (Finkelstein and Schafer) statistics and RMSE (Root Mean Squared Error) methods. FS statistics performed with each point and each variable and then selected top five candidate TMM months with statistical analysis and normalization. Finally TMY is generated to select the highest TMM score with evaluation the average errors for the 22 whole points. The TMY data is represented average state and long time variations with 22 sites and meteorological data. When TMY validated with the 11-year daily solar radiation data, the correlation coefficient was about 0.40 and the highest value is 0.57 in April and the lowest value is 0.23 in May. Mean monthly solar radiation of TMY is 411.72 MJ which is 4 MJ higher than original data. Average correlation coefficient is 0.71, the lowest correlation is 0.43 in May and the highest correlation is 0.90 in January. Accumulated annual solar radiation by TMY have higher value in south coast and southwestern region and have relatively low in middle regions. And also, differences between TMY and 11-year mean of is distributed lower 100 MJ in Kyeongbuk, higher 200 MJ in Jeju and higher 125 MJ in Jeonbuk and Jeonnam, respectively.

키워드

참고문헌

  1. 국립기상연구소, 2010, 녹색성장 지원기술개발 연구. 국립기상연구소 응용기상연구과, 11-13600000-000730-10, p. 173.
  2. 김영득, 안인수, 김민수, 장정호, 장문성, 2008, 태양광입지 선정을 위한 지형분석방법 소개 및 영향분석, 한국신재생에너지학회, Vol. 4, No. 4, pp. 3-9.
  3. 김혜중, 정선, 최영진, 김규랑, 정영림, 2009, 한반도 바람자원의 TMY(typical meteorological year) 구축 알고리즘에 관한 연구, 응용통계, Vol. 22, No. 5, pp. 943-960.
  4. 유호천, 이관호, 김경률, 박소희, 2007, TRY 방법론에 의한 표준일사량 데이터 평가, 한국생태환경건축학회논문집, Vol. 7, No. 6, pp. 23-28.
  5. 윤종호, 2003, 건물에너지 성능평가를 위한 표준기상자료의 국내외 현황, 대한 설비공학회, 설비저널, Vol. 32, No. 8, pp. 7-14.
  6. 이규태, 조일성, 지준범, 최영진, 2011, 한반도에서 해상도 변화에 따른 지표면 일사량의 시공간 분포, 한국신재생에너지학회, Vol. 7, No. 1, pp. 22-28.
  7. Anderson T. N., M. Duke, and Carson J. K., 2006, A Typical Meteorological Year for Energy Simulation in Hamilton, New Zealand, IPENZ engineering trenNz 2007-003, ISBN 1177-0422.
  8. Finkelstein J. M. and R. E. Schafer, 1971, Improved goodness of fit tests, Biometrika, 58, pp. 641-645. https://doi.org/10.1093/biomet/58.3.641
  9. Graham L. M. and L. Alex, 1999, Condensed Solar Radiation Data Base for Australia, Solar Thermal Energy Lab., Australia, Report 1.
  10. Hall, I., R. Prairie, H. Anderson, and E. Boes, 1978, Generation of Typical Meteorological Years for 26 SOLMET Status. SAND78-1601, NM, Sandia National Laboratory, Sandia Laboraties Report SAND 78-1601, p. 31.
  11. Klein, S. A., P. I. Cooper, T. L. Freeman, D. M. Beekman, W. A. Beckman, and J. A. Duffie, 1975, A method of simulation of solar processes and its applications, Solar Energy, 17, pp. 29-37. https://doi.org/10.1016/0038-092X(75)90014-6
  12. Pissimanis, D., G. Karras, V. Notaridou, and K. Gavra, 1988, The Generation of a Typical Meteorological Year for the city of Athens, Solar Energy, 40, pp. 405-411. https://doi.org/10.1016/0038-092X(88)90095-3
  13. Rahman, L. A. and J. Dewsbury, 2007, Selection of typical weather data(test reference years) for Subang, Malaysia, Building and Environment, Vol. 42, No. 1, pp. 3636-3641. https://doi.org/10.1016/j.buildenv.2006.10.004
  14. Said S. A. M. and H. M. Kardy, 1994, Generation of representative weather-Year data for Saudi Arabia, Applied Energy, Vol. 48, No. 2, pp. 131-136. https://doi.org/10.1016/0306-2619(94)90019-1
  15. Wilcox S. and M. William, 2008, User's Manual TMY3 Data Sets, Colorado, NREL, NREL/TP-581-43156, pp. 56.
  16. William M. and U. Ken, 1995, User's Manual for TMY2s typical meteorological years. Colorado, NREL, NREL/TP-463-7618, pp. 55.
  17. Zhou J., Y. Wu, and G. Yan, 2006, Generation of Typical Solar Radiation Year for China, Renewable Energy, 31, pp. 1972-1985. https://doi.org/10.1016/j.renene.2005.09.013

피인용 문헌

  1. Analysis of Very High Resolution Solar Energy Based on Solar-Meteorological Resources Map with 1km Spatial Resolution vol.9, pp.2, 2013, https://doi.org/10.7849/ksnre.2013.9.2.015
  2. Radiometer Measurement Intercomparison using Absolute Cavity Radiometer in Regional Radiometer Center at Tsukuba, Japan vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.005
  3. Correlation to Predict Global Solar Insolation and Evaluation of that Correlation for Korea(Ⅰ) vol.12, pp.S2, 2016, https://doi.org/10.7849/ksnre.2016.10.12.S2.30
  4. A Study on Uncertainty to Direct Normal Irradiance of Typical Meteorological Year Data vol.12, pp.S2, 2016, https://doi.org/10.7849/ksnre.2016.10.12.S2.36
  5. Generation of Typical Meteorological Year Data Suitable for Solar Energy Systems and Analysis of Solar Irradiance Data vol.13, pp.3, 2017, https://doi.org/10.7849/ksnre.2017.9.13.3.024