DOI QR코드

DOI QR Code

Biotransformation of trans,trans-farnesol by Wood Rot Fungi

목재부후균에 의한 trans,trans-farnesol의 생물변환

  • Kim, Young-Hun (Department of Forest Products and Technology (BK21 Program), Chonnam National University) ;
  • Lee, Su-Yeon (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Park, Mi-Jin (Division of Wood Chemistry and Microbiology, Department of Forest Products, Korea Forest Research Institute) ;
  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University) ;
  • Lee, Jae-Won (Department of Forest Products and Technology (BK21 Program), Chonnam National University)
  • 김영훈 (전남대학교 농업생명과학대학 산림자원학부) ;
  • 이수연 (서울대학교 농업생명과학대학 산림과학부) ;
  • 박미진 (국립산림과학원 임산공학부 화학미생물과) ;
  • 최인규 (서울대학교 농업생명과학대학 산림과학부) ;
  • 이재원 (전남대학교 농업생명과학대학 산림자원학부)
  • Received : 2011.08.24
  • Accepted : 2011.10.05
  • Published : 2012.03.31

Abstract

In this study, we screened and evaluated possibility of wood rot fungi as biocatalyst for biotransformation of sesquiterpenes. Screening were performed to select the most promising microorganisms with ability to biotransformation the substrate trans,trans-fanesol. Trans,trans-farnesol which is synthesized precursor of sesquiterpenes was used for resistance test on 19 of wood rot fungi. From the 19 tested wood rot fungi, 5 were selected by resistance test on different concentration of trans,trans-fanesol. Biotransformation was performed with selected wood rot fungi on liquid culture. The metabolites detected by GC-MS analysis were nerolidol for Laetiporus sulphureus var. miniatus (jungh) Imaz and eicosane for Coriolus versicolor (L.Fr) Prlar and isoborneol for Fomitopsis pinicola and isocyclocitral for Lampteromyces japonicas. As the results, wood rot fungi could be potential biocatalyst for biotransformation of sesquiterpenes.

본 연구에서는 sesquiterpene류의 생물학적 변환을 위한 생촉매로서 목재부후균을 선발하고 생물변환 가능성을 확인하였다. Sesquiterpene류 합성 전구체로 알려진 trans,trans-farnesol을 기질로 하여 총 19종의 목재부후균에 대해여 저항성 실험을 실시하였다. 기질의 농도를 달리하여 저항성 테스트를 실시하여 생물변환 가능성을 갖는 5종의 균주를 선발하였으며 선정된 균주를 이용하여 액체배지 조건에서 trans,trans-farnesol의 생물변환을 시도하였다. GC/MS를 이용하여 분석한 결과 Laetiporus sulphureus var. miniatus (jungh) Imaz, Coriolus versicolor (L. Fr). Prlar, Fomitopsis pinicola, Lampteromyces japonicas 등 4개의 균주에서 각각 nerolidol, eicosane, isoborneol, isocyclocitral 등의 대사산물을 확인할 수 있었다. 이와 같은 결과로 sesquiterpene류의 생물학적 변환을 위한 생촉매로서 목재부후균의 가능성을 확인하였다.

Keywords

References

  1. Abraham, W.R., Hoffmann, H.M., Kieslich, K., Reng, G., and Stumpf, B. 1985. Microbial transformation of some monoterpenoids and sesquiterpenoids. Ciba Found Symp. 111, 146-160.
  2. Arruda, D.C., Alexandri, F.L., Katzin, A.M., and Uliana, S.R.B. 2005. Antileishmanial activity of the terpene nerolidol. Amer. Soc. Microbiol. 49, 1679-1687.
  3. Banthorpe, D.V., Charlwood, B.V., and Young, M.R. 1973. Mono ans Sesquiterpenoids, pp. 1-185. In Hanson, J.R. (ed.). Terpenoids and steroids, vol. 12, Royal Soc. Chem. UK.
  4. Busmann, D. and Berger, R.G. 1994. Conversion of myrcene by submerged cultured basidiomycetes. J. Biotechnol. 37, 39-43. https://doi.org/10.1016/0168-1656(94)90200-3
  5. Cadwallader, K.R., Braddock, R.J., Parish, M.E., and Higgins, D.P. 1989. Bioconversion of (+)-limonene by Pseudomonas gladioli. J. Food Sci. 54, 1241-1245. https://doi.org/10.1111/j.1365-2621.1989.tb05964.x
  6. Gamero, A., Manzanares, P., Querol, A., and Belloch, C. 2011. Monoterpene alcohols release and bioconversion by Saccharomyces species and hydrids. Int. J. Food Microbiol. 145, 92-97. https://doi.org/10.1016/j.ijfoodmicro.2010.11.034
  7. Jacobson, M. 1990. Glossary of Plant-Derived Insect Deterrents, p. 213. CRC Press Inc., USA.
  8. Kirk, T.K., Croan, S., Tien, M., Murtagh, K.E., and Farrell, R.L. 1986. Production of multiple ligninases by Phanerochaete chrysosporium:effect of selected growth condition and use of a mutant strain. Enzyme Microb. Technol. 8, 27-32. https://doi.org/10.1016/0141-0229(86)90006-2
  9. Kromidas, L., Perrier, E., Flanagan, J., Rivero, R., and Bonnet, I. 2006. Release of antimicrobial actives from microcapsules by the action of axillary bacteria. Int. J. Cosmet. Sci. 28, 103-108. https://doi.org/10.1111/j.1467-2494.2006.00283.x
  10. Lee, S.Y. 2010. Analysis of terpenoids released during the drying process of Cryptomeria japonica and microbial biotransformation of terpenoids. The Graduate School Seoul National University, Seoul.
  11. Lee, J.W., Kim, H.Y., Koo, B.W., Choi, D.H., Kwon, M., and Choi, I.G. 2008. Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown tor fungi. J. Biosci. Bioeng. 106, 162-167. https://doi.org/10.1263/jbb.106.162
  12. Marostica, M.R.Jr., Silva, T.A.A.R.e, Franchi, G.C., Nowill, A., Pastore, G.M., and Hyslop, S. 2009. Antioxidant potential of aroma compounds obtained by limonene biotransformation of orange essential oil. Food Chem. 116, 8-12. https://doi.org/10.1016/j.foodchem.2009.01.084
  13. Onken, J. and Berger, R.G. 1999. Biotransformation of citronellol by the basidiomycete Cystoderma carcharias in an aerated- membrane bioreactor. Appl. Microbiol. Biotechnol. 51, 158-163. https://doi.org/10.1007/s002530051376
  14. Sode, K., Karube, I., Araki, R., and Mikami, Y. 1989. Microbial conversion of ${\beta}$-ionone by immobilized Aspergillus niger in the presence of an organic solvent. Biotechnol. Bioeng. 33, 1191-1195. https://doi.org/10.1002/bit.260330915
  15. Spindola, H.M., Servat, L., Denny, C., Rodrigues, R.A., Eberlin, M.N., Cabral, E., Sousa, I.M., Tamashiro, J.Y., Carvalho, J.E., and Foglio, M.A. 2010. Antinociceptive effect of geranylgeraniol and 6alpha, 7beta-dihydroxyvouacapan-17beta-oate methyl ester isolated from Pterodon pubescens Benth. BMC Pharmacol. 10, 1. https://doi.org/10.1186/1471-2210-10-1
  16. Tan, Q., Day, D.F., and Cadwallader, K.R. 1998. Bioconversion of (R)-(+)-limonene by P. digitatum (NRRL 1202). Process Biochem. 33, 29-37. https://doi.org/10.1016/S0032-9592(97)00048-4
  17. Toniazzo, G., De Oliveira, D., Dariva, C., Oestreicher, E.G., and Antunes, O.A.C. 2005. Biotransformation of (−)${\beta}$-pinene by Aspergillus niger ATCC 9642. Appl. Biochem. Biotechnol. 121, 837-844.
  18. Tuor, U., Winterhalter, K., and Fiechter, A. 1995. Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay. J. Biotechnol. 41, 1-17. https://doi.org/10.1016/0168-1656(95)00042-O