DOI QR코드

DOI QR Code

Organic Matter Analysis and Physicochemical Properties of Leachate from a Foot-and-Mouth Disease Landfill Site

구제역 가축 매몰지 침출수의 물리 화학적특성과 유기물질 성상분석

  • Kang, Mee-A (Dept. of Environmental Engineering, Andong National University) ;
  • Kim, Mi-Sun (Dept. of Food and Nutrition, Andong National University) ;
  • Choi, Byung-Woo (Dept. of Environmental Engineering, Andong National University) ;
  • Sohn, Ho-Yong (Dept. of Food and Nutrition, Andong National University)
  • Received : 2012.03.02
  • Accepted : 2012.03.29
  • Published : 2012.06.28

Abstract

Foot and mouth disease (FMD) is one of the most notorious and contagious viral diseases afflicting cloven-hoofed animals. In this study, the physicochemical properties of leachate from a FMD landfill site at 773-1, Waryong, Andong, Korea and the ground water from 777, Waryong, Andong, Korea, were analyzed for 1 year from December $10^{th}$ 2010 to November $17^{th}$ 2011. The leachate was collected from the FMD landfill site during March, May, July, September and November, 2011 and changes in pH, brix, water content, insoluble solids, crude proteins, crude lipids, total and reducing sugars and ash content were determined. Considering the annual profiles of temperature and rainfall at the FMD landfill site, the dramatic changes in the physicochemical properties of the leachate from March to July, and especially from May to July, such as increases in pH, and a rapid reduction of brix and organic matter, may be closely linked to the growth of microorganisms in the leachate. The sharp decreases in the concentration of biominerals, such as Mg, Ca, and Fe from 1073, 4311 and 56.2 ppm in March to 151, 78, and 0.1 ppm in November, further suggest that decreases in organic matter in the leachate result from degradation by microorganisms originating from the intestines of the livestock. Analysis of the profiles of the organic materials in the leachate revealed that the properties of the leachate were similar to those of excremental matter-derived water. These results could be applied to a number of fields for the analysis of organic matter behavior, the development of the degradation process, and risk analysis in the environment for hygiene and food industries, of leachate from FMD landfill sites.

구제역은 발굽이 갈라진 동물에서 나타나는 바이러스성질병으로, 가축전염병 중에서 가장 전염력이 강한 질병의 하나이다. 2010년 12월 10일, 경북 안동시 와룡면 주계리 773-1번지에 조성된 구제역 가축 살처분 대량매몰지의 침출수와인근 지역(안동시 와룡면 주계리 777번지) 지하수의 물리화학적 특성을 1년간 분석하였다. 2011년 3월, 5월, 7월, 9월 및 11월에 각각 침출수 시료를 회수하여 수분함량, 고형분, pH, brix, 총당, 환원당, 조지질, 회분 함량 등을 분석한 결과, 매몰 이후 겨울동안 거의 변화가 없었으나, 3월~7월 사이, 특히 온도가 $18.4^{\circ}C{\sim}27.8^{\circ}C$를 유지한 5월~7월 사이 매립지내 침출수의 특성이 급격히 변화되며, 유기물질의 빠른 분해가 나타남을 확인하였다. 특히, pH 6.41(3월)에서 7.97(9월)로 지속적인 증가, brix 및 고형분 함량의 급격한 감소와 함께 마그네슘, 칼슘 및 철분과 같은 생체 미네랄도 3월 침출수에는 각각 1073, 4311 및 56.2 ppm에서 11월 침출수에는 151, 78, 및 0.1 ppm으로 감소함을 고려할 때, 침출수내 세균 증식이 침출수의 특성변화의 주요 원인으로 작용하리라 판단된다. 실제 침출수내 일반세균 분석 결과 5월-9월 사이 급격한 세균 증식이 나타남을 확인하였다. 한편 침출수 재처리의 기본 자료를 확보하기 위해, 침출수내 유기물질의 친수성산, 소수성산(fulvic acid 및 humic acid), 반친수성산의 상대적인 분포를 측정하여 유기물질 기원을 분석하였다. 그 결과 침출수는 전형적인 분뇨연계 시설 방류수와 유사한 유기물질 성상을 나타내었으며, 인근 지하수는 전형적인 논, 흙 기원의 유기물질 성상을 나타내었다. 본 연구결과는 구제역 매몰지 침출수의 거동, 침출수의 재처리 및 환경위해 및 식품보건학적 위해 분석의 기초자료로 이용될 것이다.

Keywords

References

  1. A. O. A. C. 1990. Official methods of analysis. 15thed. Association of official analytical chemists. Washington D.C.
  2. Bae, Y. C., S. S. Yoon, K. I. Kang, I. S. Roh, H. J. Kim, B. J. So., J. W. Park, Y. H. Jean, and M. I. Kang. 2004. Clinical signs and pathologic lesions of foot and mouth disease in pigs, Korea. J. Vet. Clin. 21: 172-176.
  3. Barnard, A. L., A. Arriens, S. Cox, P. Barnett, B. Kristensen, A. Summerfield, and K. C. McCullough. 2005. Immune response characteristics following emergency vaccination of pigs against foot-and-mouth disease. Vaccine 23: 1037-1047. https://doi.org/10.1016/j.vaccine.2004.07.034
  4. Choi, B., M. Kang, and H. Y. Sohn. 2011. Lake's function on control of refractory dissolved organic matter caused by upstream rivers to Andong lake and Jinyang lake. J. Kor. Wetlands Soc. 13: 343-353.
  5. Choi, C. S. 2011. Foot-and-Mouth Disease virus and food safety. Safe Food 6: 16-21
  6. Collins, M. R., C. L. Amy, and C. Steelink. 1986. Molecular weight distribution, carboxylic acidity, and humic substances content of aquatic matter: implication for removal during water treatment. Environ. Sci. Technol. 20: 1018-1032.
  7. Elekes, C. C., I. Dumitriu, G. Busuioc, and N. S. Iliescu. 2010. The appreciation of mineral element accumulation level in some herbaceous plants species by ICP-AES method. Environ. Sci. Pollut. Res. Int. 17: 1230-1236. https://doi.org/10.1007/s11356-010-0299-x
  8. Huck, P. M. 1990. Measurement of biodegradable organic matter and bacterial growth potential in dringking water. J. AWWA. 82: 78-86.
  9. Jung, G. J., and J. Y. Lee. 2007. A study on the characteristics of landfill gas and leachate in Nanjido after constructed final cover system. J. Kor. Waste Manag. 24: 744-751.
  10. Jung, J. Y. 2011. Foot and Mouth Disease. Safe Food 6: 8-9.
  11. Ko, W. C., Y. J. Kim, and D. H. Lee. 2008. Behaviors of dissolved organic matter and trace organic pollutants depending on leachate treatment processes in final disposal sites containing incineration residues. J. Kor. Waste Manag. 25: 245-252.
  12. Kim, J. I., H. S. Jang, J. S. Kim, and H. Y. Sohn. 2009. Evaluation of antimicrobial, antithrombin, and antioxidant activity of Dioscorea batatas Decne. Kor. J. Microbiol. Biotechnol. 37: 133-139.
  13. Kim, Y. S., D. Y. Jeong, and D. H. Shin. 2008. Optimum fermentation conditions and fermentation characteristics of mulberry (Morus alba) wine. Kor. J. Food Sci. Technol. 40: 1-7.
  14. Madi, M, A. Hamilton, D. Squirrell, V. Mioulet, P. Evans, M. Lee, and D. P. King. 2011. Rapid detection of foot-and-mouth disease virus using a field-portable nucleic acid extraction and real-time PCR amplification platform. Vet. J. 22: In press http://dx.doi.org/10.1016/j.tvjl.2011.10.017
  15. Malcom, R. L. 1985. The geochemistry of stream fulvic and humic substances. In: Humic substances in soil, sediment and water: Geochemistry, isolation and characterization. Wiley-Intersciences, New York: 181-209.
  16. Moon, S. H., and J. S. Yang. 2005. Pathogenesis, diagnosis, and prophylatic vaccine development for foot and mouth disease. J. Kor. Soc. Appl. Biol. Chem. 48: 301-310.
  17. Office International des Epizooties: OIE (www.oie.int)
  18. Park, J. B. 2011. Geotechnical approach for FMD-burying site. J. Kor. Geotechnical Soc. 27: 10-21
  19. Park, J. H., K. N. Lee, S. M. Kim, Y. J. Ko, H. S. Lee, and I. S. Cho. 2009. Resistance of foot-and-mouth disease virus in various environments. Kor. J. Vet. Publ. Hlth. 33: 197-204.
  20. Park, J. K., H. J. Kim, S. R. Jeong, N. H. Lee, and S. C. Kim. 2007. Characteristics of leachate quantity and quality with different composition of municipal solid waste in solid waste landfill. J. KORRA. 15: 109-117.
  21. Quan, M., C. M. Murphy, Z. Zhang, S. Alexandersen. 2004. Determinants of early foot-and-mouth disease virus dynamics in pigs. J. Comp. Path. 131: 294-307. https://doi.org/10.1016/j.jcpa.2004.05.002
  22. Robyt, J. F., and S. Bemis. 1967. Use of the autoanalyzer for determining the blue value of the amylose-iodine complex and total carbohydrate by phenol-sulfuric acid. Anal. Biochem. 19: 56-60. https://doi.org/10.1016/0003-2697(67)90133-9
  23. Sengupta, S., M. L. Jana, D. Sengupta, and A. K. Naskar. 2000. A note on the estimation of microbial glycosidase activities by dinitrosalicylic acid reagent. Appl. Microbiol. Biotechnol. 53: 732-735. https://doi.org/10.1007/s002530000327
  24. Shin, M. J., and J. Y. Lee. 2006. Characterization of leachate by the leachate recirculation with variable organic contents in Landfill. J. Kor. Waste Manag. 23: 542-548.
  25. Sohn, H. Y., H. Y. Ryu, Y. J. Jang, H. S. Jang, Y. M. Park, and S. Y. Kim. 2008. Evaluation of antimicrobial, antithrombin, and antioxidant activity of aerial part of Saxifraga stolonifera. Kor. J. Microbiol. Biotechnol. 36: 195-200.

Cited by

  1. 가축 매몰지 침출수에 대한 수질 특성 및 호기성 미생물 분포에 관한 연구 vol.23, pp.1, 2013, https://doi.org/10.9720/kseg.2013.1.37
  2. 가축사체 매몰지 토양의 미생물 군집 분석 vol.35, pp.7, 2012, https://doi.org/10.4491/ksee.2013.35.7.503
  3. 매몰 시간의 경과에 따른 구제역 가축 매몰지 침출수 특성에 관한 연구 vol.46, pp.4, 2013, https://doi.org/10.9719/eeg.2013.46.4.345
  4. 부자재 종류가 친환경적 사축퇴비화에 미치는 영향 vol.55, pp.5, 2012, https://doi.org/10.5187/jast.2013.55.5.483
  5. 구제역 긴급행동지침(SOP)상의 화학처리방법으로 처리된 양돈분뇨의 고온호기산화공정 적용 연구 vol.19, pp.2, 2012, https://doi.org/10.11109/jaes.2013.19.2.081
  6. 구제역 매몰지역 침출수에서 발생하는 난분해성 유기물질 거동 vol.23, pp.4, 2013, https://doi.org/10.9720/kseg.2013.4.427
  7. 양도 초등학교 빗물이용시설의 수질 및 경제성 평가 vol.36, pp.5, 2012, https://doi.org/10.4491/ksee.2014.36.5.333
  8. 구제역 가축 매몰지 침출수 독성영향평가 vol.15, pp.8, 2014, https://doi.org/10.14481/jkges.2014.15.8.5
  9. 1H-NMR-based profiling of organic components in leachate from animal carcasses disposal site with time vol.21, pp.17, 2012, https://doi.org/10.1007/s11356-014-2992-7
  10. 열가수분해 반응을 이용한 조류인플루엔자(AI) 감염 가금류의 사체처리 및 연료화 vol.24, pp.4, 2012, https://doi.org/10.17137/korrae.2016.24.4.49
  11. Biodegradation characteristics of organic matters in swine carcasses under different initial operating conditions of simulated anaerobic lysimeter vol.19, pp.1, 2012, https://doi.org/10.1007/s10163-015-0386-7
  12. Pilot-Scale Bio-Augmented Aerobic Composting of Excavated Foot-And-Mouth Disease Carcasses vol.9, pp.3, 2017, https://doi.org/10.3390/su9030445
  13. Management of Animal Carcass Disposal Sites Using a Biochar Permeable Reactive Barrier and Fast Growth Tree (Populus euramericana): A Field Study in Korea vol.9, pp.3, 2012, https://doi.org/10.3390/su9030457
  14. Characteristics of Pollutants and Microbial Communities Obtained in Simulated Lysimeters of Swine Carcasses vol.9, pp.3, 2017, https://doi.org/10.3390/su9030471
  15. 돼지사체 매몰지역 지하수의 수지구화학 특성: 침출수 누출 판단 vol.23, pp.1, 2012, https://doi.org/10.7857/jsge.2018.23.1.030
  16. Removal of ammonium, phosphate, and sulfonamide antibiotics using alum sludge and low-grade charcoal pellets vol.281, pp.None, 2012, https://doi.org/10.1016/j.chemosphere.2021.130960