DOI QR코드

DOI QR Code

The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons

  • Ng, Shee Ping (Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology) ;
  • Palombo, Enzo A. (Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology) ;
  • Bhave, Mrinal (Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology)
  • Received : 2011.11.16
  • Accepted : 2012.01.27
  • Published : 2012.06.28

Abstract

Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.

Keywords

References

  1. Adaikkalam, V. and S. Swarup. 2005. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Can. J. Microbiol. 51: 209-216. https://doi.org/10.1139/w04-135
  2. Arnesano, F., L. Banci, I. Bertini, S. Mangani, and A. R. Thompsett. 2003. A redox switch in CopC: An intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc. Natl. Acad. Sci. USA 100: 3814-3819. https://doi.org/10.1073/pnas.0636904100
  3. Basim, H., G. V. Minsavage, R. E. Stall, J.-F. Wang, S. Shanker, and J. B. Jones. 2005. Characterisation of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 71: 8284-8291. https://doi.org/10.1128/AEM.71.12.8284-8291.2005
  4. Bersch, B., A. Favier, P. Schanda, S. van Aelst, T. Vallaeys, J. Coves, et al. 2008. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge. J. Mol. Biol. 380: 386-403. https://doi.org/10.1016/j.jmb.2008.05.017
  5. Bontidean, I., A. Mortari, S. Leth, N. L. Brown, U. Karlson, M. M. Larsen, et al. 2004. Biosensors for detection of mercury in contaminated soils. Environ. Pollut. 131: 255-262. https://doi.org/10.1016/j.envpol.2004.02.019
  6. Brown, N. L., S. R. Barrett, J. Camakaris, B. T. Lee, and D. A. Rouch. 1995. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17: 1153-1166. https://doi.org/10.1111/j.1365-2958.1995.mmi_17061153.x
  7. Cha, J. S. and D. A. Cooksey. 1991. Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915-8919. https://doi.org/10.1073/pnas.88.20.8915
  8. Chen, S., E. Kim, M. L. Shuler, and D. B. Wilson. 1998. $Hg^{2+}$ removal by genetically engineered Escherichia coli in a hollow fiber bioreactor. Biotechnol. Prog. 14: 667-671. https://doi.org/10.1021/bp980072i
  9. Cooksey, D. A. 1993. Copper uptake and resistance in bacteria. Mol. Microbiol. 7: 1-5. https://doi.org/10.1111/j.1365-2958.1993.tb01091.x
  10. Deng, X. and D. B. Wilson. 2001. Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 56: 276-279. https://doi.org/10.1007/s002530100620
  11. Diels, L., Q. Dong, D. van der Lelie, W. Baeyens, and M. Mergeay. 1995. The czc operon of Alcaligenes eutrophus CH34: From resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14: 142-153. https://doi.org/10.1007/BF01569896
  12. Djoko, K. Y., Z. Xiao, D. L. Huffman, and A. G. Wedd. 2007. Conserved mechanism of copper binding and transfer. A comparison of the copper-resistance proteins PcoC from Escherichia coli and CopC from Pseudomonas syringae. Inorg. Chem. 46: 4560-4568. https://doi.org/10.1021/ic070107o
  13. Djoko, K. Y., Z. Xiao, and A. G. Wedd. 2008. Copper resistance in E. coli: The multicopper oxidase PcoA catalyzes oxidation of copper(I) in $Cu^ICu^{II}$-PcoC. ChemBioChem 9: 1579-1582. https://doi.org/10.1002/cbic.200800100
  14. Dorsey, A. and L. Ingerman. 2004. Toxicology Profile for Copper. Agency for Toxic Substances and Disease Registry.
  15. Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652. https://doi.org/10.1073/pnas.76.4.1648
  16. Forst, S., J. Delgado, and M. Inouye. 1989. Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 6052-6056. https://doi.org/10.1073/pnas.86.16.6052
  17. Grass, G. and C. Rensing. 2001. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem. Biophys. Res. Commun. 286: 902-908. https://doi.org/10.1006/bbrc.2001.5474
  18. Gupta, A., K. Matsui, J. F. Lo, and S. Silver. 1999. Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5: 183-188. https://doi.org/10.1038/5545
  19. Harley, C. B. and R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucl. Acids Res. 15: 2343-2361. https://doi.org/10.1093/nar/15.5.2343
  20. Hettler, J., G. Irion, and B. Lehmann. 1997. Environmental impact of mining waste disposal on a tropical lowland river system: A case study on the Ok Tedi Mine, Papua New Guinea. Mineral. Depos. 32: 280-291. https://doi.org/10.1007/s001260050093
  21. Huang, C.-C., M. Narita, T. Yamagata, Y. Itoh, and G. Endo. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234: 361-369. https://doi.org/10.1016/S0378-1119(99)00184-5
  22. Huffman, D. L., J. Huyett, F. W. Outten, P. E. Doan, L. A. Finney, B. M. Hoffman, and T. V. O'Halloran. 2002. Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41: 10046-10055. https://doi.org/10.1021/bi0259960
  23. Kataoka, K., H. Komori, Y. Ueki, Y. Konno, Y. Kamitaka, S. Kurose, et al. 2007. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli - deletion of the methionine-rich helical region covering the substrate-binding site. J. Mol. Biol. 373: 141-152. https://doi.org/10.1016/j.jmb.2007.07.041
  24. Kholodii, G., O. V. Yurieva, O. L. Lomovskaya, Z. Gorlenko, S. Z. Mindlin, and V. G. Nikiforov. 1993. Tn5053, a mercury resistance transposon with integron's ends. J. Mol. Biol. 230: 1103-1107. https://doi.org/10.1006/jmbi.1993.1228
  25. Lee, S. M., G. Grass, C. Rensing, S. R. Barrett, C. J. Yates, J. V. Stoyanov, and N. L. Brown. 2002. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem. Biophys. Res. Commun. 295: 616-620. https://doi.org/10.1016/S0006-291X(02)00726-X
  26. Lee, Y. A., M. Hendson, N. J. Panopoulos, and M. N. Schroth. 1994. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: Homology with small blue copper proteins and multicopper oxidase. J. Bacteriol. 176: 173-188.
  27. Leedjarv, A., A. Ivask, and M. Virta. 2008. Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J. Bacteriol. 190: 2680-2689. https://doi.org/10.1128/JB.01494-07
  28. Lim, C. K. and D. A. Cooksey. 1993. Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J. Bacteriol. 175: 4492-4498.
  29. Mellano, M. A. and D. A. Cooksey. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170: 2879-2883.
  30. Mergeay, M., S. Monchy, P. Janssen, R. Houdt, and N. Leys. 2009. Megaplasmids in Cupriavidus genus and metal resistance, pp. 209-238. In E. Schwartz (ed.). Microbial Megaplasmids. Springer, Berlin.
  31. Mergeay, M., S. Monchy, T. Vallaeys, V. Auquier, A. Benotmane, P. Bertin, et al. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: Towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385-410. https://doi.org/10.1016/S0168-6445(03)00045-7
  32. Mergeay, M., D. Nies, H. G. Schlegel, J. Gerits, P. Charles, and F. Van Gijsegem. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328-334.
  33. Messerschmidt, A., R. Ladenstein, R. Huber, M. Bolognesi, L. Avigliano, R. Petruzzelli, et al. 1992. Refined crystal structure of ascorbate oxidase at 1.9 ${\AA}$ resolution. J. Mol. Biol. 224: 179-205. https://doi.org/10.1016/0022-2836(92)90583-6
  34. Mills, S. D., C. K. Lim, and D. A. Cooksey. 1994. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae. Mol. Gen. Genet. 244: 341-351.
  35. Monchy, S., M. A. Benotmane, R. Wattiez, S. van Aelst, V. Auquier, B. Borremans, et al. 2006. Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34. Microbiology 152: 1765-1776. https://doi.org/10.1099/mic.0.28593-0
  36. Multhaup, G., D. Strausak, K.-D. Bissig, and M. Solioz. 2001. Interaction of the CopZ copper chaperone with the CopA copper ATPase of Enterococcus hirae assessed by surface plasmon resonance. Biochem. Biophys. Res. Commun. 288: 172-177. https://doi.org/10.1006/bbrc.2001.5757
  37. Munson, G. P., D. L. Lam, F. W. Outten, and T. V. O'Halloran. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182: 5864-5871. https://doi.org/10.1128/JB.182.20.5864-5871.2000
  38. Ng, S. P., B. Davis, E. A. Palombo, and M. Bhave. 2009. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res. Notes 2: 38. https://doi.org/10.1186/1756-0500-2-38
  39. Outten, F. W., D. L. Huffman, J. A. Hale, and T. V. O'Halloran. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276: 30670-30677. https://doi.org/10.1074/jbc.M104122200
  40. Park, H., S. K. Saha, and M. Inouye. 1998. Two-domain reconstitution of a functional protein histidine kinase. Proc. Natl. Acad. Sci. USA 95: 6728-6732. https://doi.org/10.1073/pnas.95.12.6728
  41. Rensing, C., B. Fan, R. Sharma, B. Mitra, and B. P. Rosen. 2000. CopA: An Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97: 652-656. https://doi.org/10.1073/pnas.97.2.652
  42. Rensing, C. and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment FEMS Microbiol. Rev. 27: 197-213. https://doi.org/10.1016/S0168-6445(03)00049-4
  43. Rouch, D. A. and N. L. Brown. 1997. Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143: 1191-1202. https://doi.org/10.1099/00221287-143-4-1191
  44. Sarret, G., A. Favier, J. Coves, J.-L. Hazemann, M. Mergeay, and B. Bersch. 2010. CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: Characterization by X-ray absorption and NMR spectroscopy. J. Am. Chem. Soc. 132: 3770-3777. https://doi.org/10.1021/ja9083896
  45. Schleheck, D., T. P. Knepper, K. Fischer, and A. M. Cook. 2004. Mineralisation of individual congeners of linear alkylbenzenesulfonate by defined pairs of heterotrophic bacteria. Appl. Environ. Microbiol. 70: 4053-4063. https://doi.org/10.1128/AEM.70.7.4053-4063.2004
  46. Solioz, M. and A. Odermatt. 1995. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270: 9217-9221. https://doi.org/10.1074/jbc.270.16.9217
  47. Stock, A. M., J. M. Mottonen, J. B. Stock, and C. E. Schutt. 1989. Three-dimensional structure of CheY, the response regulator of bacterial chemotaxis. Nature 337: 745-749. https://doi.org/10.1038/337745a0
  48. Teitzel, G. M. and M. R. Parsek. 2003. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69: 2313-2320. https://doi.org/10.1128/AEM.69.4.2313-2320.2003
  49. Teixeira, E. C., J. C. Franco de Oliveira, M. T. Marques Novo, and M. C. Bertolini. 2008. The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: Gene inactivation results in copper sensitivity. Microbiology 154: 402-412. https://doi.org/10.1099/mic.0.2007/013821-0
  50. Trajanovska, S., M. L. Britz, and M. Bhave. 1997. Detection of heavy metal ion resistance genes in Gram-positive and Gramnegative bacteria isolated from a lead-contaminated site. Biodegradation 8: 113-124. https://doi.org/10.1023/A:1008212614677
  51. Van Houdt, R., S. Monchy, N. Leys, and M. Mergeay. 2009. New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96: 205-226. https://doi.org/10.1007/s10482-009-9345-4
  52. Voloudakis, A. E., T. M. Reignier, and D. A. Cooksey. 2005. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl. Environ. Microbiol. 71: 782-789. https://doi.org/10.1128/AEM.71.2.782-789.2005
  53. Yamamoto, K. and A. Ishihama. 2005. Transcriptional response of Escherichia coli to external copper. Mol. Microbiol. 56: 215-227. https://doi.org/10.1111/j.1365-2958.2005.04532.x
  54. Zhang, L., M. Koay, M. J. Maher, Z. Xiao, and A. G. Wedd. 2006. Intermolecular transfer of copper ions from the CopC protein of Pseudomonas syringae. Crystal structures of fully loaded $Cu^ICu^{II}$ forms. J. Am. Chem. Soc. 128: 5834-5850. https://doi.org/10.1021/ja058528x

Cited by

  1. Identification of a copper-responsive promoter and development of a copper biosensor in the soil bacterium Achromobacter sp. AO22 vol.28, pp.5, 2012, https://doi.org/10.1007/s11274-012-1029-y
  2. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation vol.23, pp.11, 2012, https://doi.org/10.1007/s11356-016-6563-y
  3. Resistance of Permafrost and Modern Acinetobacter lwoffii Strains to Heavy Metals and Arsenic Revealed by Genome Analysis vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/3970831
  4. Effective production of keratinase by gellan gum-immobilised Alcaligenes sp. AQ05-001 using heavy metal-free and polluted feather wastes as substrates vol.9, pp.1, 2019, https://doi.org/10.1007/s13205-018-1555-x